Peer-reviewed Publications

The USA-NPN has contributed to the development of over 100 peer-reviewed publications. Collectively the models, observational data, and gridded data have served to advance the science of phenology by increasing understanding of phenological patterns and climatic drivers of plants and animals at local to continental scales.

Jump to Publications Describing the USA-NPN Program and Collaborations.

Jump to Theses and Dissertations using USA-NPN Data or Data Products or Describing the USA-NPN Program and Collaborations

Publications Using USA-NPN Data or Data Products

  1. Goodwin, K.R., L. Hunninck, J. O'Keefe, A. Kirschbaum, E.H. Gillam, C. Heyd, M.C. Romanski, W.T. Route, and S.K. Windels. 2024. Comparing occupancy and activity metrics for assessing temporal trends in vulnerable bat populations. Biological Conservation 298: 110773. https://doi.org/10.1016/j.biocon.2024.110773
  2. Tourville, J.C., G.L.D. Murray, and S.J. Nelson. 2024. Distinct latitudinal patterns of shifting spring phenology across the Appalachian Trail Corridor. Ecology e4403. https://doi.org/10.1002/ecy.4403 
  3. Nayeri, D., S. Cushman, J. Ganey, L. Hysen, M.S. Gunther, D. Willey, and H.Y. Wan. 2024. Multiscale habitat suitability modeling for a threatened raptor offers insight into ecological model transferability. Ecological Modelling 496: 110845. https://doi.org/10.1016/j.ecolmodel.2024.110845
  4. Yoder, J.B., A.K. Andrade, L.A. DeFalco, T.C. Esque, C.J. Carlson, D.F. Shryock, R. Yeager, and C.I. Smith. 2024. Reconstructing 120 years of climate change impacts on Joshua tree flowering. Ecology Letters https://doi.org/10.1111/ele.14478
  5. Zeng, K., A.T. Sentinella, C. Armitage, and A.T. Moles. 2024. Species that require long day conditions to flower are not advancing their flowering phenology as fast as species without photoperiod requirements. Annals of Botany https://doi.org/10.1093/aob/mcae121
  6. Wang, H., S. Lin, J. Dai, and Q. Ge. 2024. Controlled experiments fail to capture plant phenological response to chilling temperature. Global Ecology and Biogeography https://doi.org/10.1111/geb.13888
  7. Xu, J., T. Wu, D. Peng, X. Fu, K. Yan, Z. Lou, and X. Zhang. 2024. Matching spring phenology indicators in ground observations and remote-sensing metrics. Remote Sensing 16(13): 2309. https://doi.org/10.3390/rs16132309
  8. Weir, J.L., W. Daniel, K. Hyder, C. Skov, and P.A. Venturelli. 2024. Artificial intelligence applied to big data reveals that lake invasions are predicted by human traffic and co-occurring invasions. Biological Invasions https://doi.org/10.1007/s10530-024-03367-6 
  9. Lee, B.R., E.F. Alecrim, T.K. Miller, J.R.K. Forrest, J.M. Heberling, R.B. Primack, and R.D. Sargent. 2024. Phenological mismatch between trees and wildflowers: reconciling divergent findings in two recent analyses. Journal of Ecology https://doi.org/10.1111/1365-2745.14317
  10. Kumar, S.S., B. Tolk, R. Dittmeier, J.J. Picotte, I. La Puma, B. Peterson, and T.D. Hatten. 2024. The Spatially Adaptable Filter for Error Reduction (SAFER) Process: Remote sensing-based LANDFIRE disturbance mapping updates. Fire 7(2): 51. https://doi.org/10.3390/fire7020051
  11. Sezen, U.U., J.E. Shue, S.J. Worthy, S.J. Davies, S.M. McMahon, and N.G. Swenson. 2024. Leaf gene expression trajectories during the growing season are consistent between sites and years in American beech. Proceedings of the Royal Society B. https://doi.org/10.1098/rspb.2023.2338
  12. Krzemien, S., W.M. Robertson, P.J. Engelken, and D.G. McCullogh. 2024. Observations of reduced ET and persistent elevated water table beneath a riparian forest gap following emerald ash borer invasion and tree mortality. Hydrological Processes https://doi.org/10.1002/hyp.15117
  13. Dietschler, N.J., T.D. Bittner, M.G. Lefebvre, J. Schmidt, C.S. Jubb, A. James, S.M. Salom, and M.C. Whitmore. 2024. Observation of key phenological stages of hemlock woolly adelgid (Hemiptera: Adelgidae): using citizen science as a tool to inform research and management. Journal of Economic Entomology toae056. https://doi.org/10.1093/jee/toae056
  14. Wootten, A.M., K.W. Dixon, D.J. Adams-Smith, and R.A. McPherson. 2024. False springs and spring phenology: propogating effects of downscaling techniques and training data. International Journal of Climatology. https://doi.org/10.1002/joc.8438
  15. Sheppy, J., E.B. Sudduth, S. Clinton, D. Riveros-Iregui, and S.H. Ledford. 2024. Urban beaver ponds show limited impact on stream carbon quantity in contrast to stormwater ponds. Urban Ecosystems. https://doi.org/10.1007/s11252-024-01536-y
  16. Wang, C., Y. Yang, G. Yin, Q. Xie, B. Xu, A. Verger, A. Descals, I. Filella, and J. Penuelas. 2024. Divergence in autumn phenology extracted from different satellite proxies reveals the timetable of leaf senescence over deciduous forests. Geophysical Research Letters https://doi.org/10.1029/2023GL107346
  17. Slapikas, R., S. Pau, R.C. Donnelly, C.-L. Ho, J.B. Nippert, B.R. Helliker, W.J. Riley, C.J. Still, and D.M. Griffith. 2024. Grass evolutionary lineages can be identified using hyperspectral leaf reflectance. JGR Biogeosciences https://doi.org/10.1029/2023JG007852
  18. Liu, S., Z. Wang, Z. Lin, Y. Zhao, Z. Yan, K. Zhang, M. Visser, P.A. Townsend, and J. Wu. 2024. Spectra-phenology integration for high-resolution, accurate, and scalable mapping of foliar functional traits. Remote Sensing of Environment 305:114082 https://doi.org/10.1016/j.rse.2024.114082
  19. Wu, S. and W. Wu. 2024. Understanding spatio-temporal variation of autumn phenology in temperate China from 1982 to 2018. Frontiers in Ecology and Evolution 11. https://doi.org/10.3389/fevo.2023.1332116
  20. Roman, M.O., C. Justice, I. Paynter, P.B. Boucher, S. Devadiga, A. Endsley, A. Erb, M. Friedl, H. Gao, L. Giglio, J.M. Gray, D. Hall, G. Hulley, J. Kimball, Y. Knyazikhin, A. Lyapustin, R.B. Myneni, P. Noojipady, J. Pu, G. Riggs, S. Sakar, C. Schaaf, D. Shah, K.H. Tran, E. Vermote, D. Wang, Z. Wang, A. Wu, Y. Ye, Y. Shen, S. Zhang, S. Zhang, X. Zhang, M. Zhao, C. Davidson, R. Wolfe. 2024. Continuity between NASA MODIS Collection 6.1 and VIIRS Collection 2 land products. Remote Sensing of the Environment 302: 113963. https://doi.org/10.1016/j.rse.2023.113963
  21. Wheeler, K.I., M.C. Dietze, D. LeBauer, J.A. Peters, A.D. Richardson, A.A. Ross, R.Q. Thomas, K. Zhu, U. Bhat, S. Munch, R.F. Buzbee, M. Chen, B. Goldstein, J. Guo, D. Hao, C. Jones, M. Kelly-Fair, H. Liu, C. Malmborg, N. Neupane, D. Pal, V. Shirey, Y. Song, M. Steen, E.A. Vance, W.M. Woelmer, J.H. Wynne, L. Zachmann. 2024. Predicting spring phenology in deciduous broadleaf forests: NEON phenology forecasting community challenge. Agricultural and Forest Meteorology 345: 109810. https://doi.org/10.1016/j.agrformet.2023.109810
  22. Nemes, C.E., P.P. Marra, T.J. Zenzal, Jr., S.A. Collins, B.C. Dossman, A.R. Gerson, C. Gomez, A.M. Gonzalez, M.G. Ramirez, S.A. Hamer, J. Marty, P.L. Vasseur, E.B. Cohen. 2023. Springing forward: migrating songbirds catch up with the start of spring in North America. Journal of Animal Ecology https://doi.org/10.1111/1365-2656.14025
  23. Xie, Y., H.T. Thammavong, L.G. Berry, C.H. Huang, and D.S. Park. 2023. Sex-dependent phenological responses to climate vary across species' ranges. Proceedings of the National Academy of Sciences 120:e2306723120 https://doi.org/10.1073/pnas.2306723120 
  24. Anteau, M.J., K.S. Ellis, G.J. MacDonald, L.D. Igl, N.D. Niemuth, and J.L. Vest. 2023. Climate-induced shifts in grassland bird nesting phenology have implications for grassland management. Global Ecology and Conservation 48: e02700. https://doi.org/10.1016/j.gecco.2023.e02700
  25. Barker, B.S., L. Coop, J.J. Duan, and T.R. Petrice. 2023. An integrative phenology and climate suitability model for emerald ash borer. Frontiers in Insect Science. 3:1239173  https://doi.org/10.3389/finsc.2023.1239173
  26. Dietschler, N.J. T.D. Bittner, C.S. Jubb, S.M. Salom, and M.C. Whitmore. 2023. Observation of key phenological stages of a forest pest: Using citizen science as a tool to inform research and management. Social Science Research Network http://dx.doi.org/10.2139/ssrn.4525617 
  27. Chase, K.D., B. Frank, A. Diss-Torrance, and C.M. Rigsby. 2023. Pre-egg hatch efficacy of dormant applications against Lymantria dispar (Lepidoptera: Erebidae). Journal of Economic Entomology https://doi.org/10.1093/jee/toad123
  28. Crimmins, T.M., E. Vogt, C.L. Brown, D. Dalan, A. Manangan, G. Robinson, Y. Song, K. Zhu, and D.S.W. Katz. 2023. Volunteer-contributed observations of flowering often correlate with airborne pollen concentrations. International Journal of Biometeorology. https://doi.org/10.1007/s00484-023-02506-3 
  29. Hubert, M.M., J.A. Schweitzer, X. Giam, and M. Papes. 2023. Contrasting effects of urbanization and fire on understory plant communities in the natural and wildland–urban interface. Ecosphere 14:e4520. https://doi.org/10.1002/ecs2.4520
  30. Wu, W., Z. Li, Z. Zhang, C. Yan, K. Xiao, Y. Wang, and Q. Xin. 2023. Developing global annual land surface phenology datasets (1982-2018) from the AVHRR data using multiple phenology retrieval methods. Ecological Indicators 150: 110262. https://doi.org/10.1016/j.ecolind.2023.110262
  31. Beiter, C.M. and T.M. Crimmins. 2023. How consistently do species leaf‑out or fower in the same order? Understanding the factors that shape this characteristic of plant communities. International Journal of Biometeorology https://doi.org/10.1007/s00484-023-02477-5
  32. Li, X., T. Ault, C.P. Evans, F. Lehner, C.M. Carillo, A. Donnelly, T. Crimmins, A.S. Gallinat, and M.D. Schwartz. 2023. Diverging Northern Hemisphere trends in meteorological versus ecological indicators of spring onset in CMIP6. Geophysical Research Letters 50, e2023GL102833. https://doi.org/10.1029/2023GL102833
  33. Chamberlain, C.J. and E.M. Wolkovich. 2023. Variation across space, species and methods in models of spring phenology. Climate Change Ecology 5: 100071. https://doi.org/10.1016/j.ecochg.2023.100071
  34. Liang, L. 2023. Climate calibration of the Spring Index model for more accurate broad-scale first leaf predictions. Climate Research 89: 99-112. https://doi.org/10.3354/cr01708
  35. Wu, W. and Q. Xin. 2023. Characterizing spring phenological changes of the land surface across the conterminous United States from 2001 to 2021. Remote Sensing 15(3): 737. https://doi.org/10.3390/rs15030737
  36. Callery, K.R., S.E. Schulwitz, A.R. Hunt, J.M. Winiarski, C.J.W. McClure, R.A. Fischer, and J.A. Heath. 2022. Phenology effects on productivity and hatching-asynchrony of American kestrels (Falco sparverius) across a continent. Global Ecology and Conservation 36:e02124. https://doi.org/10.1016/j.gecco.2022.e02124
  37. Katz, D.S.W., E. Vogt, A. Manangan, C.L. Brown, D. Dalan, K. Zhu, Y. Song, and T.M. Crimmins. 2022. Observations from the USA National Phenology Network can be leveraged to model airborne pollen. Aerobiologia https://doi.org/10.1007/s10453-022-09774-3
  38. Jevon, F.V., A. Polussa, A.K. Lang, J.W. Munger, S.A. Wood, W.R. Wieder, and M.A. Bradford. 2022. Patterns and controls of aboveground litter inputs to temperate forests. Biogeochemistry https://doi.org/10.1007/s10533-022-00988-8 
  39. Zhao, Y., C.K.F. Lee, Z. Wang, J. Wang, Y. Gu, J. Xie, Y.K. Law, G. Song, T.C. Bonebrake, X. Yang, B.W. Nelson, and J. Wu. 2022. Evaluating fine-scale phenology from PlanetScope satellites with ground observations across temperate forests in eastern North America. Remote Sensing of Environment 283:113310. https://doi.org/10.1016/j.rse.2022.113310 
  40. Alecrim, E.F., R. Sargent, and J.R.K. Forrest. 2022. Higher latitude spring-flowering herbs advance their phenology more than trees with warming temperatures. Journal of Ecology https://doi.org/10.1111/1365-2745.14023
  41. Ye, Y., X. Zhang, Y. Shen, J. Wang, T. Crimmins, and H. Scheifinger. 2022. An optimal method for validating satellite-derived land surface phenology using in-situ observations from national phenology networks. ISPRS Journal of Photogrammetry and Remote Sensing 194: 74-90. https://doi.org/10.1016/j.isprsjprs.2022.09.018
  42. Ramirez-Parada, T.H., I.W. Park, and S.J. Mazer. Herbarium specimens provide reliable estimates of phenological responses to climate at unparalleled taxonomic and spatiotemporal scales. Ecography e06173. https://doi.org/10.1111/ecog.06173
  43. Illan, J.G., G. Zhu, J.F. Walgenbach, A. Acebes-Doria, A.M. Agnello, D.G. Alston, H. Andrews, E.H. Beers, J.C. Bergh, R.T. Bessin, B.R. Blaauw, G.D. Buntin, E.C. Burkness, J.P. Cullum, K.M. Daane, L.E. Fann, J. Fisher, P. Girod, L.J. Gut, G.C. Hamilton, J.R. Hepler, R. Hilton, K.A. Hoelmer, W.D. Hutchison, P.J. Jentsch, S.V. Joseph, G.G. Kennedy, G. Krawczyk, T.P. Kuhar, J.C. Lee, T.C. Leskey, A.T. Marshal, J.M. Milnes, A.L. Nielsen, D.K. Patel, H.D. Peterson, D.D. Reisig, J.P. Rijal, A.A. Sial, L.R. Spears, J.M. Stahl, K.M. Tatman, S.V. Taylor, G. Tillman, M.D. Toews, R.T. Villanueva, C. Welty, N.G. Wiman, J.K. Wilson, F.G. Zalom, and D.W. Crowder. 2022. Evaluating invasion risk and population dynamics of the brown marmorated stink bug across the contiguous USA. https://doi.org/10.1002/ps.7113
  44. Mathis, C.L., D.J. McNeil, Jr., M.R. Lee, C.M. Grizonger, C.R.V. Otto, C.R.V., and J.L. Larkin. 2022. Can’t see the flowers for the trees: factors driving floral abundance within early-successional forests in the Central Appalachian Mountains. Canadian Journal of Forest Research. https://doi.org/10.1139/cjfr-2022-0014

  45. Crimmins, T.M. and M.A. Crimmins. 2022. Large-scale citizen science programs can support ecological and climate change assessments. Environmental Research Letters 17: 065011. https://doi.org/10.1088/1748-9326/ac72b7

  46. Battle, K.F., A. Duhon, C.R. Vispo, T.M. Crimmins, T.N. Rosenstiel, L.L. Armstrong-Davies, and C.E. de Rivera. 2022. Citizen science across two centuries reveals phenological change among plant species and functional groups in the Northeastern US. Journal of Ecology https://doi.org/10.1111/1365-2745.13926
  47. Meng, L., Y. Zhou, M.O. Roman, E.C. Stokes, Z. Wang, G.R. Asrar, J. Mao, A.D. Richardson, L. Gu, and Y. Wang. 2022. Artificial light at night: an under-appreciated effect on phenology of deciduous woody plants. Proceedings of the National Academy of Sciences https://doi.org/10.1093/pnasnexus/pgac046
  48. Sheridan, R.A. and L.L. Nackley. 2022. Applying plant hydraulic physiology methods to investigate dessication during prolonged cold storage of horticultural trees. Frontiers in Plant Science https://doi.org/10.3389/fpls.2022.818769
  49. Wang, J., D. Liu, P. Ciais, and J. Penuelas. 2022. Decreasing rainfall frequency contributes to earlier leaf onset in northern ecosystems. Nature Climate Change. https://doi.org/10.1038/s41558-022-01285-w
  50. Silva-e-Costa, J.C., A.P. Luizi-Ponzo, and D.N. McLetchie. 2022. Sex differences in dessication tolerance varies by colony in the mesic liverwort Plagiochila porelloides. Plants 11(4): 478. https://doi.org/10.3390/plants11040478 
  51. Donnelly, A., R. Yu, K. Jones, M. Belitz, B. Li, K. Duffy, X. Zhang, J. Wang, B. Seyednasrollah, K.L. Gerst, D. Li, Y. Kaddoura, K. Zhu, J. Morisette, C. Ramey, and K. Smith. 2022. Exploring discrepancies between in situ phenology and remotely derived phenometrics at NEON sites. Ecosphere 13:e3912. https://doi.org/10.1002/ecs2.3912 
  52. Geng, X., Y. Zhang, Y.H. Fu, F. Hao, I.A. Janssens, J. Penuelas, S. Piao, J. Tang, Z. Wu, X. Zhang, and N.C. Stenseth. 2022. Contrasting phenology responses to climate warming across the northern extra-tropics. Fundamental Research https://doi.org/10.1016/j.fmre.2021.11.035
  53. Armstrong-Herniman, W. and S. Greenwood. 2021. The role of winter precipitation as a climatic driver of the spring phenology of five California Quercus species (Fagaceae). Madrono 68: 450-460. https://doi.org/10.3120/0024-9637-68.4.450 
  54. Song, Y., C.J. Zajic, T. Hwang, C.R. Hakkenberg, and K. Zhu. 2021. Widespread mismatch between phenology and climate in human-dominated landscapes. AGU Advances 2: e2021AV000431. http://doi.org/10.1029/2021AV000431.
  55. Meng, L. 2021. Green with phenology. Science 374:1065-1066. http://doi.org/10.1126/science.abm8136
  56. Li, D., B.J. Stucky, B. Baiser, and R. Guralnick. 2021. Urbanization delays plant leaf senescence and extends growing season length in cold but not in warm areas of the Northern Hemisphere. Global Ecology and Biogeography 00:1-13. https://doi.org/10.1111/geb.13429
  57. Gerst, K.L., Crimmins, T.M., Posthumus, E., Marsh, R.L., Switzer, J., and Wallace, C. 2021. The USA National Phenology Network's Buffelgrass Green-up Forecast map products. Ecological Solutions and Evidence e12109. https://doi.org/10.1002/2688-8319.12109

  58. Taylor, S.D., Browning, D.M., Baca, R.A., Gao, F. 2021. Constraints and opportunities for detecting land surface phenology in drylands. Journal of Remote Sensing 9859103. https://doi.org/10.34133/2021/9859103 

  59. Fitzpatrick, L., Giambuzzi, P.J., Spreitzer, A., Reidy, B., Still, S.M., and Rollinson, C.R. 2021. Improving phenology predictions for sparsely observed species through fusion of botanical collections and citizen-science. Climate Change Ecology https://doi.org/10.1016/j.ecochg.2021.100032  

  60. Maynard-Bean, E., and Kaye, M. 2021. The seasonal influence of invasive shrubs on light and temperature in an eastern deciduous forest understory. Natural Areas Journal 41: 186-194. https://doi.org/10.3375/043.041.0304  

  61. Li, W., Qinchuan, X., Zhou, X., Zhang, Z., and Ruan, Y. 2021. Comparisons of numerical phenology models and machine learning methods on predicting the spring onset of natural vegetation across the Northern Hemisphere. Ecological Indicators 131: 108126. https://doi.org/10.1016/j.ecolind.2021.108126

  62. Ledford, S.H., Diamond, J.S., and Toran, L. 2021. Large spatiotemporal variability in metabolic regimes for an urban stream draining four wastewater treatment plants with implications for dissolved oxygen monitoring. PLoS ONE e0256292. https://doi.org/10.1371/journal.pone.0256292

  63. Morisette, J.T., Duffy, K.A., Weltzin, J.W., Browning, D.M., Marsh, R.L., Friesz, A.M., Zachmann, L.J., Enns, K.D., Landau, V.A., Gerst, K.L., Crimmins, T.M., Jones, K.D., Chang, T., Miller, B.W., Maiersperger, T.K., and Richardson, A.D. 2021. PS3: The Pheno-Synthesis software suite for integration and analysis of multi-scale, multi-platform phenological data. Ecological Informatics. https://doi.org/10.1016/j.ecoinf.2021.101400

  64. Houssein, F.A., O'Reilly, K.E., Peters, B.W., Brueseke, M.A., and Lamberti, G.A. 2021. High-frequency photographic imaging provides novel insights into nesting bald eagle diet and opportunities for public engagement. The American Midland Naturalist 186(1): 122-135. https://doi.org/10.1674/0003-0031-186.1.122  

  65. Wittman, J.T., Silk, P., Parker, K., and Aukema, B.H. 2021. Optimizing early detection strategies: defining the effective attraction radius of attractants for emerald ash borer Agrilus planipennis Fairmaire. Agriculture and Forest Entomology. https://doi.org/10.1111/afe.12457

  66. Liang, L., Wu, J. 2021. An empirical method to account for climatic adaptation in plant phenology models. International Journal of Biometeorology. https://doi.org/10.1007/s00484-021-02152-7

  67. Dietschler, N.J., Bittner, T.D., Trotter, R.T. III, Fahey, T.J., Whitmore, M.C. 2021. Biological control of hemlock woolly adelgid: implications of adult emergence patterns of two Leucopis spp. (Diptera: Chamaemyiidae) and Laricobius nigrinus (Coleoptera: Derodontidae) larval drop. Environmental Entomology. https://doi.org/10.1093/ee/nvab037

  68. Moon, M., Seyednasrollah, B., Richardson, A.D., Friedl, M.A. 2021. Using time series of MODIS land surface phenology to model temperature and photoperiod controls on spring greenup in North American deciduous forests. Remote Sensing of the Environment 260: 112466. https://doi.org/10.1016/j.rse.2021.112466

  69. Thomason, J.W., Clarke, S., Riggins, J.J. 2021. Evaluation of phenological indicators for optimizing spring southern pine beetle (Coleoptera: Curculionidae: Scolytinae) trapping surveys. Florida Entomological Society 103(4): 444-451. https://doi.org/10.1653/024.103.00405

  70. Barve, V.V., Brenskelle, L., Li, D., Stucky, B.J., Barve, N.V., Hantak, M.M., McLean, B.S., Paluh, D.J., Oswald, J.A., Belitz, M.W., Folk, R.A., Guralnick, R.P. 2020. Methods for broad-scale plant phenology assessments using citizen scientists' photographs. Applications in Plant Sciences 8:e11315 https://doi.org/10.1002/aps3.11315

  71. Xin, Q., Li, J., Li, Z., Li, Y., Zhou, X. 2020. Evaluations and comparisons of rule-based and machine-learning-based methods to retrieve satellite-based vegetation phenology using MODIS and USA National Phenology Network data. International Journal of Applied Earth Observation and Geoinformation 93: 102189. https://doi.org/10.1016/j.jag.2020.102189 

  72. Maynard-Bean, E., Kaye, M., Wagner, T., Burkhart, E.P. 2020. Citizen scientists record novel leaf phenology of invasive shrubs in eastern U.S. forests. Biological Invasions https://doi.org/10.1007/s10530-020-02326-1

  73. Berman, E.E.; Graves, T.A.; Mikle, N.L.; Merkle, J.A.; Johnston, A.N.; Chong, G.W.  2020. Comparative Quality and Trend of Remotely Sensed Phenology and Productivity Metrics across the Western United States. Remote Sensing 12: 2538.  https://doi.org/10.3390/rs12162538

  74. Gillard, M.B., Drenovsky, R.E., Thiébaut, G., Tarayre, M., Futrell, C.J., and Grewell, B.J. 2020. Seed source regions drive fitness differences in invasive macrophytes. American Journal of Botany 107( 5): 749– 760. https://doi.org/10.1002/ajb2.1475

  75. Belitz, M.W., Larsen, E.A., Ries, L. and Guralnick, R.P. 2020. The accuracy of phenology estimators for use with sparsely sampled presence‐only observations. Methods in Ecology and Evolution 10.1111/2041-210X.13448

  76. Berend, K., Amatangelo, K., Weihrauch, D., Norment, C. 2020. Effects of snow and temperature on the phenology of alpine snowbank plants on Mt. Washington, New Hampshire. Rhodora. https://doi.org/10.3119/19-22

     

  77. Taylor, R.V., Holthuijzen, W., Humphrey, A. and Posthumus, E. 2020. Using phenology data to improve control of invasive plant species: A case study on Midway Atoll NWR. Ecological Solutions and Evidence 1:1-7. doi:10.1002/2688-8319.12007

     

  78. Prevéy, J.S., Parker, L.E., Harrington, C.A. 2020. Projected impacts of climate change on the range and phenology of three culturally-important shrub species. PLOS ONE 15(5): e0232537. https://doi.org/10.1371/journal.pone.0232537

  79. Gerst, K.L., Crimmins, T.M., Posthumus, E.E., Rosemartin, A. Schwartz, M.D. 2020. How well do the spring indices predict phenological activity across plant species? International Journal of Biometeorology.  https://doi.org/10.1007/s00484-020-01879-z

  80. Crimmins, T. M., K. L. Gerst, D. G. Huerta, R. L. Marsh, E. E. Posthumus, A. H. Rosemartin, J. Switzer, J. F. Weltzin, L. Coop, N. Dietschler, D. A. Herms, S. Limbu, R. T. Trotter, III, Whitmore, M. 2020. Short-Term Forecasts of Insect Phenology Inform Pest Management. Annals of the Entomological Society of America. https://doi.org/10.1093/aesa/saz026

  81. Chen, X., Yang, Y. 2020. Observed earlier start of the growing season from middle to high latitudes across the Northern Hemisphere snow-covered landmass for the period 2001–2014. Environmental Research Letters. https://doi.org/https://doi.org/10.1088/1748-9326/ab6d39.

  82. Bórnez, K., Descals, A., Verger, A., Peñuelas, J. 2020. Land surface phenology from VEGETATION and PROBA-V data. Assessment over deciduous forests. International Journal of Applied Earth Observation and Geoinformation 84. https://doi.org/10.1016/j.jag.2019.101974.

  83. Zhang, X., Wang, J., Henebry, J.M., Gao, F. 2020. Development and evaluation of a new algorithm for detecting 30 m land surface phenology from VIIRS and HLS time series. ISPRS Journal of Photogrammetry and Remote Sensing 161 37-51. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2020.01.012.

  84. Taylor, S.D., White, E.P. 2020. Automated data‐intensive forecasting of plant phenology throughout the United States. Ecological Applications. https://doi.org/10.1002/eap.2025.

  85. Xie. Y., Wilson, A.M. 2020. Change point estimation of deciduous forest land surface phenology. Remote Sensing of the Environment 240. https://doi.org/https://doi.org/10.1016/j.rse.2020.111698.

  86. Oswald, W.W., Foster, D.R., Shuman, D.N., Chilton, E.S., Douchette, D.L., Duranleau, D.L. 2020. Conservation implications of limited Native American impacts in pre-contact New England. Nature Sustainability. https://doi.org/https://doi.org/10.1038/s41893-019-0466-0.

  87. Prevéy, J.S., Parker, L.E., Harrington, C.A., Lamb, C.T., Proctor, M.F. 2020. Climate change shifts in habitat suitability and phenology of huckleberry (Vaccinium membranaceum). Agricultural and Forest Meteorology 280. https://doi.org/10.1016/j.agrformet.2019.107803.

  88. Elmendorf, S.C., Crimmins, T.M., Gerst, K.L., Weltzin, J.F. 2019. Time to branch out? Application of hierarchical survival models in plant phenology. Agricultural and Forest Meteorology 279[107694]. https://doi.org/10.1016/j.agrformet.2019.107694

  89. Emery, N., Roth, K., Pivovaroff, A.L. 2019. Flowering phenology indicates plant flammability in a dominant shrub species. Ecological Indicators 109. https://doi.org/10.1016/j.ecolind.2019.105745.

  90. Piao, S., Liu, Q., Chen, A., Janssens, I.A., Fu, Y., Dai, J., Liu, L., Lian, X., Shen, M., Zhu, X. 2019. Plant phenology and global climate change: Current progresses and challenges. Global Change Biology 25, 6 1922-1940. https://doi.org/10.1111/gcb.14619.

  91. Richardson, A.D., Hufkens, K., Li, X., Ault, T.R. 2019. Testing Hopkins’ Bioclimatic Law with PhenoCam data. Applications in Plant Sciences. https://doi.org/10.1002/aps3.1228.

  92. Mehdipoor, H., Zurita-Milla, R., Augustijn, E.W., Izquierdo-Verdiguier, E. 2019. Exploring differences in spatial patterns and temporal trends of phenological models at continental scale using gridded temperature time-series. International Journal of Biometeorology. https://doi.org/10.1007/s00484-019-01826-7.

  93. Taylor, S.D. 2019. pyPhenology: A python framework for plant phenology modelling. The Journal of Open Source Software 3(28). https://doi.org/10.21105/joss.00827.

  94. MacKenzie, C.M., Primack, R.B., Miller‐Rushing, A.J. 2019. Trails‐as‐transects: phenology monitoring across heterogeneous microclimates in Acadia National Park, Maine. Ecosphere Volume 10, Issue 3. https://doi.org/10.1002/ecs2.2626.

  95. Brenskelle, L., Stucky, B.J., Deck, J., Walls, R., Guralnick, R.P. 2019. Integrating herbarium specimen observations into global phenology data systems. Applications in Plant Sciences. https://doi.org/10.1002/aps3.1231.

  96. Li, D., Stucky, B.J., Deck, J., Baiser, B., Guralnick, R.P. 2019. The effect of urbanization on plant phenology depends on regional temperature. Nature Ecology & Evolution. https://doi.org/10.1038/s41559-019-1004-1.

  97. Crimmins, M.A., Crimmins, T.M. 2019. Does an Early Spring Indicate an Early Summer? Relationships between Intra‐seasonal Growing Degree Day Thresholds. Journal of Geophysical Research: Biogeosciences Volume 124, Issue 7. https://doi.org/10.1029/2019JG005297.

  98. Chamberlain, C.J., Cook, B.I., de Cortazar-Atauri, G., Wolkovich, E.M. 2019. Rethinking False Spring Risk. Global Change Biology. https://doi.org/10.1111/gcb.14642.

  99. Martinuzzi, S., Allstadt, A.J., Pidgeon, A.M., Flather, C.H., Jolly, W.M., Radeloff, V.C. 2019. Future changes in fire weather, spring droughts, and false springs across U.S. National Forests and Grasslands. Ecological Applications. https://doi.org/10.1002/eap.1904.

  100. Peng, D., Wu, C., Zhang, X., Yu, L., Huete, A.R., Wang, F., Luo, S., Liu, X., Zhang, H. 2018. Scaling up spring phenology derived from remote sensing images. Agricultural and Forest Meteorology 256-257. https://doi.org/10.1016/j.agrformet.2018.03.010.

  101. Mehdipoor, H., Zurita-Milla, R., Izquierdo-Verdiguier, E., Betancourt, J.L. 2018. Influence of source and scale of gridded temperature data on modelled spring onset patterns in the conterminous United States. International Journal of Climatology 1-11. https://doi.org/10.1002/joc.5857.

  102. Izquierdo-Verdiguier, E., Zurita-Milla, R., Ault, T., Schwartz, M.D. 2018. Development and analysis of spring plant phenology products: 36 years of 1-km grids over the conterminous US. Agricultural and Forest Meteorology Volume 262 34-41. https://doi.org/10.1016/j.agrformet.2018.06.028.

  103. Liang, L. 2018. A spatially explicit modeling analysis of adaptive variation in temperate tree phenology. Agricultural and Forest Meteorology 266-267 73-86. https://doi.org/10.1016/j.agrformet.2018.12.004.

  104. Ren, S., Chen, X., Lang, W., Schwartz, M.D. 2018. Climatic controls of the spatial patterns of vegetation phenology in mid-latitude grasslands of the Northern Hemisphere. American Geophysical Union. https://doi.org/10.1029/2018JG004616.

  105. D'Orangeville, L., Maxwell, J., Kneeshaw, D., Pederson, N., Duchesne, L., Logan, T., Houle, D., Arseneault, D., Beier, C.M., Bishop, D.A., Druckenbrod, D., Fraver, S., Girard, F., Halman, J., Hansen, C., Hart, J.L., Hartmann, H., Kaye, M., Leblanc, D., Manzoni, S., Ouimet, R., Rayback, S., Rollinson, C.R., Phillips, R.P. 2018. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Global Change Biology https://doi.org/10.1111/gcb.14096.

  106. Waller, E.K., Crimmins, T.M., Walker, J.J., Posthumus, E.E., Weltzin, J.F. 2018. Differential changes in the onset of spring across US National Wildlife Refuges and North American migratory bird flyways. PLOS One 13(9). https://doi.org/10.1371/journal.pone.0202495.

  107. Carrillo, C.M., Ault, T., Wilks, D.S. 2018. Spring onset predictability in the North American Multi‐Model Ensemble. Journal of Geophysical Research - Atmospheres. https://doi.org/10.1029/2018JD028597.

  108. Howard, A.F. 2018. Asclepias syriaca (common milkweed) flowering date shift in response to climate change. Scientific Reports 8. https://doi.org/10.1038/s41598-018-36152-2.

  109. Zhang, X., Liu, L., Liu, Y., Jayavelu, S., Wang, J., Moon, M., Henebry, G.M., Friedl, M.A., Schaaf, C.B. 2018. Generation and evaluation of the VIIRS land surface phenology product. Remote Sensing of Environment Volume 216 212-229. https://doi.org/10.1016/j.rse.2018.06.047.

  110. Xie, Y., Civco, D.L., Silander, J.A. 2018. Species-specific spring and autumn leaf phenology captured by time-lapse digital cameras. Ecosphere 9(1). https://doi.org/10.1002/ecs2.2089.

  111. Taylor, S.D., Meiners, J.M., Riemer, K., Orr, M.C., White, E.P. 2018. Comparison of large‐scale citizen science data and long‐term study data for phenology modeling. Ecology. https://doi.org/10.1002/ecy.2568.

  112. Park, I.W., Mazer, S.J. 2018. Overlooked climate parameters best predict flowering onset: assessing phenological models using the elastic net. Global Change Biology. https://doi.org/10.1111/gcb.14447.

  113. Pearse, W.D., Davis, C.C., Inouye, D.W., Primack, R.B., Davies, J. 2017. A statistical estimator for determining the limits of contemporary and historic phenology. Nature Ecology & Evolution 1 1876–1882. https://doi.org/10.1038/s41559-017-0350-0.

  114. Crimmins, T.M., Crimmins, M.A., Gerst, K.L., Rosemartin, A.H., Weltzin, J.F. 2017. USA National Phenology Network’s volunteer-contributed observations yield predictive models of phenological transitions. PLOS One 12(8). https://doi.org/10.1371/journal.pone.0182919.

  115. Peng, D., Wu, C., Li, C., Zhang, X., Liu, Z., Ye, H., Luo, S., Liu, X., Hu, Y., Fang, B. 2017. Spring green-up phenology products derived from MODIS NDVI and EVI: Intercomparison, interpretation and validation using National Phenology Network and AmeriFlux observations. Ecological Indicators 77 323-326. https://doi.org/10.1016/j.ecolind.2017.02.024.

  116. Zurita-Milla, R., Goncalves, R., Izquierdo-Verdiguier, E., Ostermann, F.O., Soille, P., Marchetti, P.G. 2017. Exploring Vegetation Phenology At Continental Scales : Linking Temperature-Based Indices And Land Surface Phenological Metrics. Proceedings of the 2017 conference on big data from space (BiDS '17), 28-30 November 2017, Toulouse, France 63-66.

  117. Belmecheri, S., Babst, F., Hudson, A.R., Betancourt, J.L., Trouet, V. 2017. Northern Hemisphere Jet Stream Position Indices as Diagnostic Tools for Climate and Ecosystem Dynamics. Earth Interactions 21 https://doi.org/10.1175/EI-D-16-0023.1.

  118. Paxton, K.L., Moore, F.R. 2017. Connecting the dots: Stopover strategies of an intercontinental migratory songbird in the context of the annual cycle. Ecology and Evolution. https://doi.org/10.1002/ece3.3227.

  119. Yule, K.M., Bronstein, J.L. 2017. Reproductive ecology of a parasitic plant differs by host species: vector interactions and the maintenance of host races. Oecologia 1-12. https://doi.org/10.1007/s00442-017-4038-6.

  120. Zhu, L., Meng, J., Li, F., You, N. 2017. Predicting the patterns of change in spring onset and false springs in China during the twenty-first century. International Journal of Biometeorology 1-16. https://doi.org/10.1007/s00484-017-1456-4.

  121. Gerst, K.L., Rossington, N.L., Mazer, S.J. 2017. Phenological responsiveness to climate differs among four species of Quercus in North America. Journal of Ecology. https://doi.org/10.1111/1365-2745.12774.

  122. Filippa, G., Cremonese, E., Migliavacca, M., Galvagno, M., Sonnentag, O., Humphreys, E., Hufkens, K., Ryu, Y., Verfaillie, J., di Cella, U.Morra, Richardson, A.D. 2017. NDVI derived from near-infrared-enabled digital cameras: Applicability across different plant functional types. Agricultural and Forest Meteorology. https://doi.org/10.1016/j.agrformet.2017.11.003

  123. Peng, D., Zhang, X., Wu, C., Huang, W., Gonsamo, A., Huete, A.R., Didan, K., Tan, B., Liu, X., Zhang, B. 2017. Intercomparison and evaluation of spring phenology products using National Phenology Network and AmeriFlux observations in the contiguous United States. Agricultural and Forest Meteorology 242 33-46. https://doi.org/10.1016/j.agrformet.2017.04.009.

  124. Wu, X., Zurita-Milla, R., Kraak, M.J. 2016. A novel analysis of spring phenological patterns over Europe based on co-clustering. Journal of Geophysical Resources Biogeosciences. https://doi.org/10.1002/2015JG003308.

  125. Labe, Z., Ault, T., Zurita-Milla, R. 2016. Identifying anomalously early spring onsets in the CESM large ensemble project. Climate Dynamics 1-18. https://doi.org/10.1007/s00382-016-3313-2.

  126. Park, I.W. 2016. Timing the bloom season: a novel approach to evaluating reproductive phenology across distinct regional flora. Landscape Ecology Volume 31, Issue 7 1567–1579. https://doi.org/10.1007/s10980-016-0339-0.

  127. Kelly, J.F., Horton, K.G., Stepanian, P.M., de Buers, K.M., Fagin, T., Bridge, E.S., Chilson, P.B. 2016. Novel measures of continental-scale avian migration phenology related to proximate environmental cues. Ecosphere Volume 7, Issue 9. https://doi.org/10.1002/ecs2.1434.

  128. Verger, A., Filella, I., Baret, F., Peñuelas, J. 2016. Vegetation baseline phenology from kilometric global LAI satellite products. Remote Sensing of Environment 178 1-14. https://doi.org/10.1016/j.rse.2016.02.057.

  129. Monahan, W.B., Rosemartin, A.H., Gerst, K.L., Fisichelli, N.A., Ault, T., Schwartz, M.D., Gross, J.E., Weltzin, J.F. 2016. Climate change is advancing spring onset across the U.S. national park system. EcoSphere 7(10). https://doi.org/10.1002/ecs2.1465.

  130. Elmore, A.J., Stylinski, C.D., Pradhan, K. 2016. Synergistic Use of Citizen Science and Remote Sensing for Continental-Scale Measurements of Forest Tree Phenology. Remote Sensing Volume 5, Issue 8. https://doi.org/10.3390/rs8060502.

  131. Wallace, C.S.A., Walker, J.J., Skirvin, S.M., Patrick-Birdwell, C., Weltzin, J.F., Raichle, H. 2016. Mapping Presence and Predicting Phenological Status of Invasive Buffelgrass in Southern Arizona Using MODIS, Climate and Citizen Science Observation Data. Remote Sensing 8(7) 524. https://doi.org/10.3390/rs8070524.

  132. McCormack, M.L., Gaines, K.P., Pastore, M., Eissenstat, D.M. 2015. Early season root production in relation to leaf production among six diverse temperate tree species. Plant Soil 389:121. https://doi.org/10.1007/s11104-014-2347-7.

  133. Allstadt, A.J., Vavrus, S.J., Heglund, P.J., Pidgeon, A.M., Thogmartin, W.E., Radeloff, V.C. 2015. Spring plant phenology and false springs in the conterminous US during the 21st century. Environmental Research Letters Volume 10. https://doi.org/10.1088/1748-9326/10/10/104008.

  134. Ault, T., Schwartz, M.D., Zurita-Milla, R., Weltzin, J.F., Betancourt, J.L. 2015. Trends and natural variability of spring onset in the coterminous United States as evaluated by a new gridded dataset of spring indices. Journal of Climate. https://doi.org/10.1175/JCLI-D-14-00736.1

  135. Wood, E.M., Kellermann, J.L. 2015. Phenological Synchrony and Bird Migration: Changing Climate and Seasonal Resources in North America. Studies in Avian Biology 246.

  136. Mehdipoor, H., Zurita-Milla, R., Rosemartin, A.H., Gerst, K.L., Weltzin, J.F. 2015. Developing a Workflow to Identify Inconsistencies in Volunteered Geographic Information: A Phenological Case Study. PLOS One. https://doi.org/10.1371/journal.pone.0140811.

  137. Rosemartin, A.H., Denny, E.G., Weltzin, J.F., Marsh, L., Wilson, B.E., Mehdipoor, H., Zurita-Milla, R., Schwartz, M.D. 2015. Lilac and honeysuckle phenology data 1956-2014. Nature Scientific Data. https://doi.org/10.1038/sdata.2015.38.

  138. Piao, S., Tan, J., Chen, A., Fu, Y.H., Ciais, P., Liu, Q., Janssens, I.A., Vicca, S., Zeng, Z., Jeong, S.J., Li, Y., Myneni, R.B., Peng, S., Shen, M., Peñuelas, J. 2015. Leaf onset in the northern hemisphere triggered by daytime temperature. Nature Communications 6. https://doi.org/10.1038/ncomms7911.

  139. Cleary, M.B., Naithani, K.J., Ewers, B.E., Pendall, E. 2015. Upscaling CO2 fluxes using leaf, soil and chamber measurements across successional growth stages in a sagebrush steppe ecosystem. Journal of Arid Environments 121 43-51. https://doi.org/10.1016/j.jaridenv.2015.05.013.

  140. Mazer, S.J., Gerst, K.L., Matthews, E.R., Evenden, A. 2015. Species-specific phenological responses to winter temperature and precipitation in a water-limited ecosystem. Ecosphere 6 (6). https://doi.org/10.1890/ES14-00433.1.

  141. Fu, Y., Piao, S., Vitasse, Y., Zhao, H., De Boeck, H.J., Liu, Q., Weber, U., Hanninen, H., Janssens, I.A. 2015. Increased heat requirement for leaf flushing in temperate woody species over 1980-2012: effects of chilling, precipitation and insolation. Global Change Biology. https://doi.org/10.1111/gcb.12863

  142. Melaas, E.K., Friedl, M.A., Richardson, A.D. 2015. Multi-scale modeling of spring phenology across Deciduous Forests in the Eastern United States. Global Change Biology. https://doi.org/10.1111/gcb.13122.

  143. Ault, T., Zurita-Milla, R., Schwartz, M.D. 2015. A Matlab toolbox for calculating spring indices from daily meteorological data. Computers and Geosciences 83 46–53. https://doi.org/10.1016/j.cageo.2015.06.015.

  144. Medvigy, D., Kim, S.Hee, Kim, J., Kafatos, M.C. 2015. Dynamically downscaling predictions for deciduous tree leaf emergence in California under current and future climate. International Journal of Biometeorology. https://doi.org/10.1007/s00484-015-1086-7.

  145. Gerst, K.L., Kellerman, J., Enquist, C.A.F., Rosemartin, A.H., Denny, E.G. 2015. Estimating the onset of spring from a complex phenology database: Trade-offs across geographic scales. Journal of Biometeorology. https://doi.org/10.1007/s00484-015-1036-4.

  146. Yue, X., Unger, N., Keenan, T.F., Zhang, X., Vogel, C.S. 2015. Probing the past 30 year phenology trend of US deciduous forests. Biogeosciences 12 4693–4709. https://doi.org/10.5194/bg-12-4693-2015.

  147. Fuccillo, K.K., Crimmins, T.M., deRivera, C.E., Elder, T.S. 2014. Assessing accuracy in volunteer-based plant phenology monitoring. International Journal of Biometeorology. https://doi.org/10.1007/s00484-014-0892-7.

  148. Chapman, D.S., Haynes, T., Beal, S., Essl, F., Bullock, amesM. 2014. Phenology predicts the native and invasive range limits of common ragweed. Global Change Biology Vol. 20, Issue 1 192–202. https://doi.org/10.1111/gcb.12380.

  149. Rosemartin, A.H., Crimmins, T.M., Enquist, C.A.F., Gerst, K.L., Kellerman, J.L., Posthumus, E.E., Weltzin, J.F., Denny, E.G., Guertin, P., Marsh, L.R. 2014. Organizing Phenological Data Resources to Inform Natural Resource Conservation. Biological Conservation. https://doi.org/10.1016/j.biocon.2013.07.003.

  150. Jeong, S.J., Medvigy, D. 2014. Macroscale prediction of autumn leaf coloration throughout the continental United States. Global Ecology and Biogeography. https://doi.org/10.1111/geb.12206.

  151. Peterson, A.G., Abatzoglou, J.T. 2014. Observed changes in false springs over the contiguous United States. Geophysical Research Letters 41 2156–2162. https://doi.org/10.1002/2014GL059266.

  152. Crimmins, T.M., Weltzin, J.F., Rosemartin, A.H., Surina, E.M., Marsh, L.R., Denny, E.G. 2014. Targeted campaign increases activity among participants in Nature’s Notebook, a citizen science project. Natural Sciences Education 43 64-72. https://doi.org/10.4195/nse2013.06.0019.

  153. Liang, L., Schwartz, M.D. 2013. Testing a growth efficiency hypothesis with continental-scale phenological variations of common and cloned plants. International Journal of Biometeorology. https://doi.org/10.1007/s00484-013-0691-6.

  154. McCabe, G.J., Betan.court, J.L., Pederson, G.T., Schwartz, M.D. 2013. Variability Common to First Leaf Dates and Snowpack in the Western Conterminous United States. American Meteorological Society Earth Interactions. https://doi.org/10.1175/2013EI000549.1.

  155. Medvigy, D., Jeong, S.J., Clark, K.L., Skowronski, N.S., Schäfer, K.V.R. 2013. Effects of seasonal variation of photosynthetic capacity on the carbon fluxes of a temperate deciduous forest. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1002/2013JG002421.

  156. Jeong, S.J., Medvigy, D., Shevliakova, E., Malyshev, S. 2013. Predicting changes in temperate forest budburst using continental-scale observations and models. Geophysical Research Letters 40 1-6. https://doi.org/10.1029/2012Gl054431.

  157. Ault, T., Henebry, G.M., de Beurs, K.M., Schwartz, M.D., Betancourt, J.L., Moore, D.J.P. 2013. The False Spring of 2012, Earliest in North American Record. EOS Volume 94, Issue 20 181-182. https://doi.org/10.1002/2013EO200001.

  158. Euskirchen, E.S., Carman, T.B., McGuire, A.D. 2013. Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model. Global Change Biology. https://doi.org/10.1111/gcb.12392.

  159. Brundson, C., Comber, L. 2012. Assessing the changing flowering date of the common lilac in North America: a random coefficient model approach. GeoInformatica 4 675-690. https://doi.org/10.1007/s10707-012-0159-6.

  160. McCabe, G.J., Ault, T., Cook, B.I., Bentancourt, J.L., Schwartz, M.D. 2011. Influences of the El Niño Southern Oscillation and the Pacific Decadal Oscillation on the timing of the North American spring. International Journal of Climatology. https://doi.org/10.1002/joc.3400.

  161. Schwartz, M.D., Reed, B.C. 2010. Surface phenology and satellite sensor-derived onset of greenness: an initial comparison. International Journal of Remote Sensing 20 3451-3457. https://doi.org/10.1080/014311699211499

  162. Schwartz, M.D., Hanes, J.M. 2010. Intercomparing Multiple Measures of the Onset of Spring in Eastern North America. International Journal of Climatology 30(11) 1614-1626. https://doi.org/10.1002/joc.2008

  163. Schwartz, M.D., Hanes, J.M. 2009. Continental-scale phenology: warming and chilling. International Journal of Climatology. https://doi.org/10.1002/joc.2014

  164. White, M.A., Beurs, K.M., Didan, K., Inouye, D.W., Richardson, A.D., Jensen, O.P., O’Keefe, J., Zhang, G., Nemani, R.R., Leeuwen, W.J.D., Brown, J.F., Wit, A., Schaepman, M., Lin, X., Dettinger, M., Bailey, A., Kimball, J., Schwartz, M.D., Baldocchi, D.D., Lee, J.T., Lauenroth, W.K. 2009. Intercomparison, Interpretation, and Assessment of Spring Phenology in North America Estimated from Remote Sensing for 1982 to 2006. Global Change Biology 15(10) 2335-2359. https://doi.org/10.1111/j.1365-2486.2009.01910.x

  165. Hayhoe, K., Wake, C., Huntington, T.G., Luo, L., Schwartz, M.D., Sheffield, J., Wood, E., Anderson, B., Bradbury, J., DeGaetano, A., Troy, T.J., Wolfe, D. 2007. Past and Future Changes in Climate and Hydrological Indicators in the U.S. Northeast. Climate Dynamics 28(4) 381-407. https://doi.org/10.1007/s00382-006-0187-8.

  166. Kathuroju, N., White, M.A., Symanzik, J., Schwartz, M.D., Powell, J.A., Nemani, R.R. 2007. On the use of the Advanced Very High Resolution Radiometer for development of prognostic land surface phenology models. Ecological Modelling 201(2) 144-156. https://doi.org/10.1016/j.ecolmodel.2006.09.011.

  167. Zhang, X., Tarpley, D., Sullivan, J.T. 2007. Diverse responses of vegetation phenology to a warming climate. Geophysical Research Letters 34. https://doi.org/10.1029/2007GL031447.

  168. Schwartz, M.D., Ahas, R., Aasa, A. 2006. Onset of spring starting earlier across the northern hemisphere. Global Change Biology 12 343-351. https://doi.org/10.1111/j.1365-2486.2005.01097.x

  169. Bonfils, C., Angert, A., Henning, C.C., Biraud, S., Doney, S.C., Fung, I. 2005. Extending the record of photosynthetic activity in the eastern United States into the presatellite period using surface diurnal temperature range. Geophysical Research Letters 32 L08405. https://doi.org/10.1029/2005GL022583.

  170. Wolfe, D.W., Schwartz, M.D., Lakso, A.N., Otsuki, Y., Pool, R.M., Shaulis, N.J. 2004. Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA. International Journal of Biometeorology 49 303-309. https://doi.org/10.1007/s00484-004-0248-9

  171. Zhao, T., Schwartz, M.D. 2003. Examining the onset of spring in Wisconsin. Climate Research 24 59–70. www.jstor.org/stable/24868360.

  172. Schwartz, M.D., Chen, X. 2002. Examining the onset of spring in China. Climate Research 21 157-164.

  173. Schwartz, M.D., Crawford, T.M. 2001. Detecting energy-balance modifications at the onset of spring. Physical Geography 22 394–409.

  174. Cayan, D.R., Kammerdiener, S.A., Dettinger, M.D., Caprio, J.M., Peterson, D.H. 2001. Changes in the onset of spring in the western United States. Bulletin of the American Meteorological Society 82 399–415.

  175. Schwartz, M.D., Reiter, B.E. 2000. Changes in North American spring. International Journal of Climatology 20 929-932.

  176. Schwartz, M.D. 1998. Green-wave phenology. Nature 394 839-840.

  177. Schwartz, M.D. 1997. Spring Index Models: An Approach to Connecting Satellite and Surface Phenology. Phenology of Seasonal Climates 23-38.

  178. Schwartz, M.D. 1996. Examining the spring discontinuity in daily temperature ranges. Journal of Climate 9 803-808.

  179. Schwartz, M.D. 1994. Monitoring global change with phenology: the case of the spring green wave. International Journal of Biometeorology 38 18-22.

  180. Caprio, J.M. 1993. Western regional phenological summary of information on honeysuckle and lilac first bloom phase covering the period 1956-1991.

  181. Caprio, J.M. 1993. A collection of the annual reports to cooperators of the phenological survey in the western region of the United States and related phenological information for the period 1956–1992. Montana Agricultural Experiment Station, Bozeman, MT.

  182. Schwartz, M.D. 1993. Assessing the Onset of Spring: A Climatological Perspective. Physical Geography 14(6) 536-550.

  183. Schwartz, M.D. 1992. Phenology and Springtime Surface Layer Change. Monthly Weather Review 11 2570-2578.

  184. Schwartz, M.D., Karl, T.R. 1990. Spring phenology: Nature's experiment to detect the effect of. Monthly Weather Review 118 883–890.

  185. Schwartz, M.D. 1990. Detecting the onset of spring: a possible application of phenological models. Climate Research 1 23-29.

  186. Schwartz, M.D., Marotz, G.A. 1988. Synoptic Events and Spring Phenology. Physical Geography 9(2) 151-161.

  187. Schwartz, M.D., Marotz, G.A. 1986. An approach to examining regional atmosphere-plant interactions with phenological data. Journal of Biogeography 13 551–560.

  188. Dube, P.A., Perry, L.P., Vittum, M.T. 1984. Instructions for phenological observations: lilac and honeysuckle. Bulletin/Vermont Agricultural Experiment Station (USA).

  189. Hopp, R.J. 1978. Phenology: An Aid to Agricultural Technology. Vermont Agricultural Experiment Station Bulletin 684.

  190. Hopp, R.J. 1978. Phenology: an aid to agricultural technology. Vermont Agricultural Experiment Station Bulletin 684.

  191. Hickin, R.P., Vittum, M.T. 1976. The importance of soil and air temperature in spring phenoclimatic modelling. International Journal of Biometeorology 20 200–206.

  192. Hopp, R.J. 1976. Modeling Lilac Development. International Journal of Biometeorology 20 256-260.

  193. Hopp, R.J. 1976. Modeling Lilac Development. International Journal of Biometeorology 20 256-260.

  194. Lieth, H. 1974. Phenology and seasonality modeling. Ecological Studies - Analysis and Synthesis Series.

  195. Caprio, J.M. 1974. The Solar Thermal Unit Concept in Problems Related to Plant Development and Potential Evapotranspiration. Phenology and Seasonality Modeling, H. Lieth, editor. 353-364.

  196. Hopp, R.J., Blair, B.O., Hickin, R.P. 1973. Plant phenology in eastern and central North America. II. Phenologieal observations in lilac Red Rothomagensis. Vermont Agr. Exp. Sta. Bull 678.

  197. Hopp, R.J., Blair, B.O., Hickin, R.P. 1973. Plant Phenology in Eastern and Central North America: II. Phenological Observations on Lilac 'Red Rothomagensis'. Vermont Agricultural Experiment Station Bulletin 678.

  198. Hopp, R.J., Blair, B.O. 1973. Plant phenology in eastern and central North America. I. Development of networks and preliminary results. Vermont Agr. Exp. Sta. Bull 677 20.

  199. Hopp, R.J., Blair, B.O. 1973. Plant Phenology in Eastern and Central North America: I. Development of Networks and Preliminary Results. Vermont Agricultural Experiment Station Bulletin 677.

  200. Caprio, J.M. 1966. A Statistical Procedure for Determining the Association between Weather and Non-Measurement Biological Data. Agricultural Meteorology 3 55-72.

  201. Caprio, J.M. 1966. Patterns of plant development in the Western United States. Montana Agricultural Experiment Station Bulletin 607.

  202. Caprio, J.M. 1957. Phenology of lilac bloom in Montana. Science 126 1344–1345.

Publications Describing the USA-NPN Program and Collaborations

  1. Khodadadzadeh, M., P. Kalverla, and R. Zurita-Milla. 2004. Harmonizing machine learning based phenological modeling: a unified workflow for comparative analyses. IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium. Jul 7-12, 2021. https://doi.org/10.1109/IGARSS53475.2024.10641356
  2. Denny, E.G. and T.M. Crimmins. 2023. Updates to standardized plant and animal observation protocols of the USA National Phenology Network. International Journal of Biometeorology 67: 927-930. https://doi.org/10.1007/s00484-023-02444-0  (SharedIt access)
     
  3. Rosemartin, A.R., T.M. Crimmins, K.L. Gerst, E.E. Posthumus, A.R. Ramirez, C.S.A. Wallace, and T.L. Morelli. 2023. Lessons learned in knowledge co-production for climate-smart decision-making. Environmental Science & Policy 141: 178-187. https://doi.org/10.1016/j.envsci.2023.01.010
     
  4. Raschke, A.B., K.V. Pegram, N.A. Melkonoff, J. Davis, and S.A. Blackwell. 2022. Collaborative conservation by botanical gardens: unique opportunities for local to global impacts. Journal of Zoological and Botanical Gardens 3: 463-487. https://doi.org/10.3390/jzbg3030035
     
  5. Crimmins, T.M., E.G. Denny, E.E. Posthumus, A.H. Rosemartin, R. Croll, M. Montano, and H. Panci. 2022. Science and management advancements made possible by the USA National Phenology Network’s Nature’s Notebook platform. BioScience. https://doi.org/10.1093/biosci/biac061
     
  6. Gerst, K.L., A.H. Rosemartin, E.E. Posthumus, and T.M. Crimmins. Successes and challenges on a spectrum of stakeholder engagement. 2022. Pages 149-160 in: Neary, D.G. and Gottfried, G.J., eds. Collaboration Now for the Future: Biodiversity and Management of the Madrean Archipelago VI meeting proceedings, Tucson, Arizona, May 14-18, 2018. Proceedings RMRS-P-79. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 495 p. https://doi.org/10.2737/RMRS-P-79 
     
  7. Crimmins, T.M. and E.E. Posthumus. 2022. Do carefully-timed email messages increase accuracy and precision in citizen scientists’ reports of events? Citizen Science Theory and Practice 7(1):1-11. https://doi.org/10.5334/cstp.464
     
  8. Jaeger, D.M., Looze, A.C.M., Raleigh, M.S., Miller, B.W., Friedman, J.M., and Wessman, C.A. 2022. From flowering to foliage: accelerometers track tree sway to provide high-resolution insights into tree phenology. Agricultural and Forest Meteorology 318: 108900. https://doi.org/10.1016/j.agrformet.2022.108900
     
  9. Nugent, J. 2021. Taking the pulse of our planet with Nature's Notebook. Science Scope 45(2): 9-11. https://www.nsta.org/science-scope/science-scope-novemberdecember-2021/t...
     
  10. Bates, A.E., Primack, R.B.,  Biggar, B.S., et al. 2021. Global COVID-19 lockdown highlights humans as both threats and custodians of the environment. Biological Conservation 263: 109175. https://doi.org/10.1016/j.biocon.2021.109175 

  11. Rosemartin, A., Watkins, T., Miller-Rushing, A.J. 2021. Monitoring phenology in US national parks through citizen science: some preliminary lessons and prospects for protected areas. Park Stewardship Forum 37(3): 552–560. https://doi.org/10.5070/P537354739 

  12. Keskey, B. 2021. Finding the pulse of nature through guided inquiry in nature-based citizen science. Kaleidoscope: Educator Voices and Perspectives. Spring 2021. https://www.knowlesteachers.org/kaleidoscope/finding-the-pulse-of-nature...
     
  13. Garretson, A. 2021. Citizen science can improve visitor experiences and research outcomes in museums and cultural institutions. In: What's Emerging in the Field?: Essays from the MCN 2020 Virtual Scholarship Program Recipients. Museum Computer Network. https://publications.mcn.edu/2020-scholars/citizen-science/

  14. Crimmins, T.M. 2021. Reading the leaves to track environmental hazards and health. Eos. https://doi.org/10.1029/2021EO157181

  15. Crimmins, T.M., Posthumus, E.E., Schaffer, S.N., Prudic, K.L. 2021. COVID-19 impacts on participation in large scale biodiversity-themed community science projects in the United States. Biological Conservation 256:109017. https://doi.org/10.1016/j.biocon.2021.109017

  16. Crimmins, T.M. 2021. The USA National Phenology Network: Big idea, productivity and potential--and now, at big risk. Bulletin of the Ecological Society of America 102:1-3. https://doi.org/10.1002/bes2.1802

  17. Petrauski, L., Owen, S., Constantz, G., Anderson, J.T. 2020. Developing a historical phenology dataset through community involvement for climate change research. American Journal of Climate Change 9: 11-22. https://doi.org/10.4236/ajcc.2020.91002.

  18. Blumenthal, D.M., Mueller, K.E., Kray, J.A., Ocheltree, T.W., Augustine, D.J. and Wilcox, K.R. 2020. Traits link drought resistance with herbivore defense and plant economics in semiarid grasslands: the central roles of phenology and leaf dry matter content. Journal of Ecology.  https://doi.org/10.1111/1365-2745.13454

  19. Chisholm, C., Becker, M.S., Pollard, W.H. 2020. The Importance of Incorporating Landscape Change for Predictions of Climate-Induced Plant Phenological Shifts. Frontiers in Plant Sciences. https://doi.org/10.3389/fpls.2020.00759

  20. McDonough MacKenzie, C., Gallinat, A.S., Zipf, L. 2020. Low‐cost observations and experiments return a high value in plant phenology research. Applications in Plant Sciences 8(4): e11338. https://doi.org/10.1002/aps3.11338.

  21. Sharpe, J. 2019. Fern Ecology and Climate Change. Indian Fern Journal. 36 : 179-199. 

  22. Prudic, K.L., Wilson, K., Toshack, M.C., Gerst, K.L., Rosemartin, A., Crimmins, T.M., Oliver, J.C. 2019. Creating the Urban Farmer’s Almanac with Citizen Science Data. Insects 10(9) 294. https://doi.org/10.3390/insects10090294.

  23. Petrauski, L., Owen, S.F., Constantz, G.D., Anderson, J.T. 2019. Changes in flowering phenology of Cardamine concatenata and Erythronium americanum over 111 years in the Central Appalachians. Plant Ecology 1-12. https://doi.org/10.1007/s11258-019-00956-7

  24. Du, Y., Yang, B., Chen, S., Ma, K. 2019. Diverging shifts in spring phenology in response to biodiversity loss in a subtropical forest. Wiley https://doi.org/10.1111/jvs.12806.

  25. Lachapelle, P.R., Albrecht, D.E., Posthumus, E.E., Barnett, L., Crimmins, T.M., Stancioff, E., Einerson, J., Warren, P.L. 2019. Building local resilience to climate change through citizen science, environmental education, and decision-making. In: Addressing Climate Change at the Community Level in the United States. Routledge, New York, NY, pp 50-64.

  26. Gallinat, A.S., Primack, R.B., Lloyd-Evans, T.L. 2019. Can invasive species replace native species as a resource for birds under climate change? A case study on bird-fruit interactions. Biological Conservation. https://doi.org/10.1016/j.biocon.2019.108268.

  27. Posthumus, E.E., Barnett, L.A., Crimmins, T.M., Einerson, J., Stancioff, E., Warren, P.L. 2018. Building Local Resilience to Climate Change Through Citizen Science, Environmental Education and Decision-Making. Addressing Climate Change at the Community Level in the United States 50-64. https://doi.org/10.4324/9781351211727-4.

  28. Yost, J.M., Sweeney, P.W., Gilbert, E., Nelson, G., Guralnick, R., Gallinat, A.S., Ellwood, E.R., Rossington, N., Willis, C.G., Blum, S.D., Walls, R.L., Haston, E.M., Denslow, M.W., Zohner, C.M., Morris, A.B., Stucky, B.J., Carter, J.R., Baxter, D.G., Bolmgren, K., Denny, E.G., Dean, E., Pearson, K.D., Davis, C.C., Mischler, B.D., Soltis, P.S., Mazer, S.J. 2018. Digitization protocol for scoring reproductive phenology from herbarium specimens of seed plants. Applications in Plant Science 6(2):e1022 https://doi.org/10.1002/aps3.1022. 

  29. Kissling, W.D., Walls, R., Bowser, A., Jones, M.O., Kattge, J., Agosti, D., Amengual, J., Basset, A., van Bodegom, P.M., Cornelissen, J.H.C., Denny, E.G., Deudero, S., Egloff, W., Elmendorf, S.C., Garcia, E.A., Jones, K.D., Jones, O.R., Lavorel, S., Lear, D., Navarro, L.M., Pawar, S., Pirzl, R., Ruger, N., Sal, S., Salguero-Gomez, R., Schigel, d., Schulz, K.-S., Skidmore, A., Guralnick, R.P. 2018. Towards global data products of Essential Biodiversity Variables on species traits. Nature Ecology & Evolution 2:1531-1540. https://doi.org/10.1038/s41559-018-0667-3

  30. Gougherty, A.V., Keller, S.R., Kruger, A., Stylinski, C.D., Elmore, A.J., Fitzpatrick, M.C. 2018. Estimating tree phenology from high frequency tree movement data. Agricultural and Forest Meteorology Volume 263 217-224. https://doi.org/10.1016/j.agrformet.2018.08.020.

  31. Harrer, L.E.F., Levi, T. 2018. The primacy of bears as seed dispersers in salmon-bearing ecosystems. Ecosphere 9(1). https://doi.org/e02076.10.1002/ecs2.2076.

  32. Feldman, R.E., Žemaitė, I., Miller-Rushing, A.J. 2018. How training citizen scientists affects the accuracy and precision of phenological data. International Journal of Biometeorology 1-15. https://doi.org/10.1007/s00484-018-1540-4.

  33. Hufkens, K., Basler, D., Milliman, T., Melaas, E.K., Richardson, A.D. 2018. An integrated phenology modelling framework in R. Methods in Ecology & Evolution. https://doi.org/10.1111/2041-210X.12970.

  34. Sha, J.Chih Mun, Chua, S.Chin, Chew, P.Ting, Ibrahim, H., Lua, H.Keong, Fung, T.Kwan, Zhang, P. 2017. Small-scale variability in a mosaic tropical rainforest influences habitat use of long-tailed macaques. Primates 1-9. https://doi.org/10.1007/s10329-017-0630-y. 

  35. Stancioff, E., Bisson, B., Randall, S., Muhlin, J., McDonough, C., Gallo, S. 2017. Signs of the Seasons: A New England Phenology Program. Maine Policy Review 26.2 19-26. 

  36. McKinley, D.C., Miller-Rushing, A.J., Ballard, H.L., Bonney, R., Brown, H., Evans, D.M., French, R.A., Phillips, T.B., Ryan, S.F., Shanley, L.A., Shirk, J.L., Stepenuck, K.F., Weltzin, J.F., Wiggins, A., Boyle, O.D., Briggs, R.D., Chapin, S.F., Hewitt, D.A., Preuss, P.W., Soukup, M.A. 2017. Citizen science can improve conservation science, natural resource management, and environmental protection. Biological Conservation 208 15-28. https://doi.org//10.1016/j.biocon.2016.05.015. 

  37. Browning, D.M., Karl, J.W., Morin, D., Richardson, A.D., Tweedie, C.E. 2017. Phenocams Bridge the Gap between Field and Satellite Observations in an Arid Grassland Ecosystem. Remote Sensing 9(10). https://doi.org/10.3390/rs9101071.

  38. GOLD-GOFC. 2017. A Sourcebook of Methods and Procedures for Monitoring Essential Biodiversity Variables in Tropical Forests with Remote Sensing. Eds: GOFCGOLD & GEO BON. Report v. UNCBD COP-13, GOFC-GOLD Land Cover Project Office, Wageningen University, The Netherlands.

  39. Elmendorf, S.C., Jones, K.D., Cook, B.I., Diez, J.M., Enquist, C.A.F., Hufft, R.A., Jones, M.O., Mazer, S.J., Miller-Rushing, A.J., Moore, D.J.P., Schwartz, M.D., Weltzin, J.F. 2016. The plant phenology monitoring design for The National Ecological Observatory Network. EcoSphere Volume 7, Issue 4. https://doi.org/10.1002/ecs2.1303.

  40. Wang, R., Gamon, J.A., Montgomery, R.A., Townsend, P.A., Zygielbaum, A.I., Bitan, K., Tilman, D., Cavender-Bares, J. 2016. Seasonal Variation in the NDVI–Species Richness Relationship in a Prairie Grassland Experiment (Cedar Creek). Remote Sensing 8(2) 128. https://doi.org/10.3390/rs8020128. 

  41. McKinley, D.C., Miller-Rushing, A.J., Ballard, H.L., Bonney, R.E., Brown, H., Evans, D.M., French, R.A., Parrish, J.K., Phillips, T.B., Ryan, S.F., Shanley, L.A., Shirk, J.L., Stepenuck, K.F., Weltzin, J.F.,.Wiggins, A., Boyle, O.D., Briggs, R.D., Chapin, S.F., Hewitt, D.A., Preuss, P.W., Soukup, M.A. 2015. Investing in Citizen Science Can Improve Natural Resource Management and Environmental Protection. Issues in Ecology 19 1-28.

  42. Glynn, P.D., Owen, T. 2015. Review of the USA National Phenology Network. https://doi.org/10.3133/cir1411.

  43. Kern, A.L., Roehrig, G.H., Bhattacharya, D., Wang, J.Y., Finley, F.A., Reynolds, B.J., Nam, Y., Mueller, M.P., Tippins, D.J. 2015. Drawing on Place and Culture for Climate Change Education in Native Communities. EcoJustice, Citizen Science and Youth Activism, Environmental Discourses in Science Education 121-138. https://doi.org/10.1007/978-3-319-11608-2_8. 

  44. Kellermann, J.L., Enquist, C.A.F., Humple, D.L., Seavy, N.E., Rosemartin, A.H., Cormier, R.L., Barnett, L.A. 2015. A Bird’s-Eye View of the USA National Phenology Network, an Off-the-Shelf Monitoring Program. Phenological Synchrony and Bird Migration: Changing Climate and Seasonal Resources in North America 47-60. 

  45. Hallman, C., Arnott, H. 2015. Morphological and Physiological Phenology of Pinus longaeva in the White Mountains of California. Tree Ring Research Volume 71 Issue 1 1-12. https://doi.org/10.3959/1536-1098-71.1.1.

  46. Youssefel, K., Mouaadamine, M., Achraf, M., Boubker, N., Elhoussinee, M. 2015. Flowering and fruiting phenology, and physico-chemical characteristics of 2-year-old plants of six species of Opuntia from eight regions of Morocco. Journal of Horticultural Science & Biotechnology 90(6) 682–688. https://doi.org/10.1080/14620316.2015.11668731.

  47. Browning, D.M., Rango, A., Karl, J.W., Laney, C.M., Vivoni, E.R., Tweedie, C.E. 2015. Emerging technological and cultural shifts advancing drylands research and management. Frontiers in Ecology and the Environment 13 52-60. https://doi.org/10.1890/140161.

  48. Denny, E.G., Gerst, K.L., Miller-Rushing, A.J., Tierney, G.L., Crimmins, T.M., Enquist, C.A.F., Guertin, P., Rosemartin, A.H., Schwartz, M.D., Thomas, K.A., Weltzin, J.F. 2014. Standardized phenology monitoring methods to track plant and animal activity for science and resource management applications. International Journal of Biometeorology 58(4) 591-601. https://doi.org/10.1007/s00484-014-0789-5. 

  49. Matthews, E.R., Gerst, K.L., Mazer, S.J., Brigham, C., Evenden, A., Forrestel, A., Haggerty, B., Haultain, S., Hoines, J., Samuels, S., Villalba, F. 2014. Natural Resource Report - California Phenology Project (CPP) plant phenological monitoring protocol: Version 1. Natural Resource Report.

  50. Warren, P.L., Barnett, L.A. 2014. Phenology: Using Phenology as a tool for Education, Research, and Understanding Environmental Change. University of Arizona, College of Agriculture and Life Sciences Cooperative Extension AZ1633.

  51. Haggerty, B., Hove, A., Mazer, S.J., Barnett, L. 2013. Flight of the Pollinators: Plant phenology from a pollinator's perspective. Citizen Science: 15 Lessons that bring biology to life. 

  52. Tierney, G., Mitchell, B., Miller-Rushing, A.J., Katz, J., Denny, E., Brauer, C., Donovan, T., Richardson, A.D., Toomey, M., Kozlowski, A., Weltzin, J.F., Gerst, K., Sharron, E., Sonnentag, O., Dieffenbach, F. 2013. Phenology monitoring protocol: Northeast Temperate Network. National Park Service. 

  53. Matthews, E.R., Gerst, K.L., Mazer, S.J., Bingham, C., Evenden, A., Forrestel, A., Haggerty, B., Haultain, S., Hoines, J., Samuels, S., Villalba, F. 2013. California Phenology Project: Report on pilot phase activities, 2010-2013. Natural Resource Report.

  54. Posthumus, E.E., Barnett, L.A., Crimmins, T.M., Kish, G.R., Sheftall, W., Stancioff, E., Warren, P. 2013. Nature's Notebook and Extension: Engaging Citizen-Scientists and 4-H Youth to Observe a Changing Environment. Journal of Extension Volume 51, Number 1. https://joe.org/joe/2013february/iw1.php

  55. Haggerty, B.P., Matthews, E.R., Gerst, K.L., Evenden, A.G., Mazer, S.J. 2013. The California Phenology Project: Tracking Plant Responses to Climate Change. BioOne, Madroño Vol. 60 No. 1 1-3. https://doi.org/10.3120/0024-9637-60.1.1. 

  56. Haggerty, B., Hove, A., Mazer, S.J., Barnett, L. 2013. Flight of the pollinators: A repeatable hands-on exploration of plant phenology from a pollinator's perspective. Birds, Butterflies, Bullfrogs and Beyond: Bring Biology to Life through Citizen Science. 

  57. Schwartz, M.D., Betancourt, J.L., Weltzin, J.F. 2012. From Caprio’s Lilacs to the USA National Phenology Network. Frontiers in Ecology and the Environment Frontiers in Ecology and the Environment, 10: 324-327. https://doi.org/10.1890/110281

  58. Enquist, C.A.F., Rosemartin, A.H., Schwartz, M.D. 2012. Identifying and prioritizing phenological data products and tools. Eos Trans. AGU, 93( 37), 356. https://doi.org/10.1029/2012EO370007

  59. Nolan, V.P., Weltzin, J.F. 2011. Phenology for Science, Resource Management, Decision Making, and Education, Eos Trans. AGU, 92( 2), 15. https://doi.org/10.1029/2011EO020004

  60. Betancourt, J.L., Schwartz, M.D., Breshears, D.D., Brewer, C.A., Frazer, G., Gross, J.E., Mazer, S.J., Reed, B.C., Wilson, B.E. 2007. Evolving plans for the USA National Phenology Network. Eos Trans 88(19) 211. https://doi.org/10.1029/2007EO190007.

Theses or Dissertations Using USA-NPN Data or Data Products

  1. Karhi, K. 2024. The role of leaf out timing and Vinca minor invasion on a deciduous understory plant community. Master's thesis, University of Guelph.
  2. Daniel, A. 2024. Stewarding floodplain forests in a changing climate: Assisted migration and spring tree phenology in an urban climate change experiment and monitoring for floodplain tree regeneration. Master's thesis, University of Minnesota.
  3. Kagie, L. 2024. Creating a workflow in Python to predict leaf emergence. Master's thesis, University of Utrecht.
  4. Hood, J. 2024. Emerald Ash Borer, Agrilus planipennis, in Arizona: A management guide and identification key. Master's thesis, Northern Arizona University. 
  5. Song, Y. 2023. Phenology in the Anthropocene: Interactions between ecology, climate change, and human society. Doctoral dissertation, University of California, Santra Cruz.
     
  6. Whipple, S.E. 2023. Where have all the pollinators gone? An analysis of the shifts in climate and phenology that have altered pollinator diversity in the Greater Yellowstone Ecosystem. Doctoral dissertation, Colorado State University.
     
  7. Mulhall, B.M. 2023. The influence of nest site characteristics on nest success and parasitism of black-capped vireos (Vireo atricapilla) in the southwestern Edwards Plateau. Master's thesis, Texas State University.
     
  8. Swan, P. 2022. Citizen science as experiential education in the modern classroom. School of Education and Leadership Student Capstone Project, Hamline University.
     
  9. Bohannon, G.R. 2022. Optimizing biological control of Emerald Ash Borer in North Carolina: host phenology and parasitoid recovery. Master's thesis, North Carolina State University. 
     
  10. Bobowski, T. 2022. Population-level Analysis of Migratory Phenology Using Genomic Data in a Migratory Songbird. Master's thesis, Colorado State University.
     
  11. Flores, A. 2022. Linking Plot and Landscape Level Phenology. Master's thesis, University of Texas at El Paso.   
     
  12. Kenote, T.R. 2020. Indigenous Phenology: An Interdisciplinary Case Study on Indigenous Phenological Knowledge on the Menominee Nation Forest. Doctoral dissertation, University of Minnesota.

  13. Mathis, C.L. 2020. Habitat Ecology of Native Pollinator Communities Within Early Successional Deciduous Forests of the Central Appalachian Mountains of Pennsylvania. Doctoral dissertation, Indiana University of Pennsylvania.

  14. Meng, L. 2020. Examination of phenological responses to environmental changes and improvement of phenological modeling. Doctoral dissertation, University of Iowa.

  15. Soucy, A. 2020. Fostering Climate Change Resilience: A Socio-Ecological Forest Systems Approach. Doctoral dissertation, University of Maine.

  16. Bath-Rosenfeld, R. 2019. Engaging Citizen Scientists to Determine The Importance of Non-Agricultural Fruiting Trees for Seed-Dispersing Frugivores on Working Landscapes in Southern Costa Rica. Doctoral dissertation, Northern Arizona University.

  17. Gougherty, A.V. 2019. Integrating Genetic Information with Macroscale Models of Species’ Distributions and Phenology: A Case Study with Balsam Poplar (Populus balsamifera L.). Doctoral dissertation, University of Maryland, College Park.

  18. Levy, C. 2019. Climate Impact of Land-Use Change in The Northeastern United States: Measuring Albedo and Carbon Sequestration in Willow and Forest Bioenergy Systems. Doctoral dissertation, Cornell University.

  19. Maynard-Bean, E. 2019. Shedding Light on Invasive Shrubs in Eastern Deciduous Forests of North America. Doctoral dissertation, Pennsylvania State University.

  20. Richard, R. 2019. Harvest Intensity and Delineation of Outwash Soils in Wisconsin. Doctoral dissertation, Michigan Technological University.

  21. Battle, K. 2018. Public Participation in Plant-pollinator Conservation: Key Assessment Areas That Support Networked Restoration and Monitoring. Doctoral dissertation, Portland State University.

  22. Norman, G. 2018. Fusing satellite data to monitor the urban area’s effect on plant phenology. Doctoral dissertation, State University of New York at Albany.

  23. Rettler, S.J. 2018. Reduced Natural Foods Alter Bottom-up Pressures on American Black Bears. Doctoral dissertation, University of Minnesota.

  24. Yule, K. 2018. Mistletoe-vector-host Interactions: From Within-host Processes to Population Genetic Structure. Doctoral dissertation, University of Arizona.

  25. Gallinat, A.S. 2018. Effects of Climate Change and Invasive Plants on Autumn Phenology in Massachusetts, USA. Doctoral dissertation, Boston University.

  26. Lillian, S. 2017. Associational susceptibility of a native shrub, Atriplex canescens, mediated by an invasive annual forb, Brassica tournefortii, and invasive stinkbug, Bagrada hilaris. Doctoral dissertation, University of California, Riverside.

  27. McDonough MacKenzie, C.N. 2017. Climate change, species loss, and spring phenology in and around Acadia National Park, Maine. Doctoral dissertation, Boston University.

  28. Moore, J.D., III. 2017. Sexual Dimorphism in the Moss Bryum argenteum and its Implications for Sex Ratio Bias. Doctoral dissertation, University of Kentucky.

  29. Petrauski, L.M. 2017. Historical phenology of West Virginia: 130 years of spring avian migration and wildflower blooming. Doctoral dissertation, West Virginia University.

  30. Wang, R. 2017. Improving the Estimation of Seasonal Leaf Area Index of Coniferous Forests for Better Carbon and Water Flux Estimation. Doctoral dissertation, University of Toronto.

  31. Cohen, J. 2016. Climate Change Drives Outbreaks of Emerging Infectious Disease and Phenological Shifts. Doctoral dissertation, University of South Florida.

  32. Jia, S. 2016. Understanding the Ecological Challenges in California Protected Areas Through the Lens of Remote Sensing Technologies. Doctoral dissertation, University of California, Los Angeles.

  33. Johnson, S.G. 2016. From Communities of Practice to Classroom Communities of Inquiry: Engaging Students in Meaning Construction. Doctoral dissertation, University of South Carolina.

  34. Klos, P.Z. 2016. Influences of Climate Change on Water Availability in Complex Terrain: Understanding Earth Processes and their Relation to Social Action. Doctoral dissertation, University of Idaho.

  35. Jones, M.O. 2015. Satellite microwave measurement of land surface phenology: Clarifying vegetation phenology response to climatic drivers and extreme events. Doctoral dissertation, University of Montana.

  36. Spellman, K.V. 2015. Invasive plants and pollination of Alaskan berry species: Integrating ecology and education. Doctoral Dissertation, University of Alaska Fairbanks.

  37. Hernandez, A.J. 2014. Furthering our understanding and scaling patterns and controls of land-atmosphere carbon, water and energy exchange in a Chihuahuan Desert shrubland with novel Cyberinfrastructure. Doctoral dissertation, University of Texas, El Paso.

  38. Melaas, E.K. 2014. Using eddy covariance, remote sensing, and in situ observations to improve models of springtime phenology in temperate deciduous forests. Doctoral dissertation, Boston University.

  39. Rong, Y. 2013. Examining spring and autumn phenology in a temperate deciduous urban woodlot. Doctoral dissertation, University of Wisconsin-Milwaukee.

  40. Allen, J.M. 2012. Global change ecology: native and invasive species responses to climate and land use at local to biogeographical scales. Doctoral dissertation, University of Connecticut.

  41. VanGyzen, J. 2012. How climate affects the fall phenology of the Northern Hardwood Forest. Doctoral dissertation, Plymouth State University.

  42. MacNamee, S.H. 2011. Geospatial Data Accessibility in Web 2.0 Environments. Doctoral dissertation, University of Tennessee, Knoxville

  43. Votta, K. 2011. Establishing baseline phenology trends for northern hardwood trees along an elevation gradient. Master’s thesis, Plymouth State University.

  44. Hallman, C.L. 2010. Unraveling environmental factors that affect Pinus longaeva growth in the White Mountains, California. Doctoral dissertation, University of Arizona.

Theses or Dissertations Describing the USA-NPN Program and Collaborations

  1. Bowers, H.M. 2018. Pollinator Ecology, Habitat Management, and Landscape Restoration on Federal and Private Lands in South-East Washington State. Doctoral dissertation, Washington State University.

  2. Buckley, S. 2018. Restoring Food Chains for Monarch Butterflies in the Southwestern United States. Doctoral dissertation, University of Arizona.

  3. Sorensen, A. 2017. Framing in Science Communication: Influencing the Publics' Behavior Towards the Environment. Doctoral dissertation, Rutgers University, New Brunswick.