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Abstract Phenology offers critical insights into the responses
of species to climate change; shifts in species’ phenologies
can result in disruptions to the ecosystem processes and ser-
vices upon which human livelihood depends. To better detect
such shifts, scientists need long-term phenological records
covering many taxa and across a broad geographic distribu-
tion. To date, phenological observation efforts across the USA
have been geographically limited and have used different
methods, making comparisons across sites and species diffi-
cult. To facilitate coordinated cross-site, cross-species, and
geographically extensive phenological monitoring across the
nation, the USA National Phenology Network has developed
in situ monitoring protocols standardized across taxonomic
groups and ecosystem types for terrestrial, freshwater, and
marine plant and animal taxa. The protocols include elements
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that allow enhanced detection and description of phenological
responses, including assessment of phenological “status”, or
the ability to track presence—absence of a particular
phenophase, as well as standards for documenting the degree
to which phenological activity is expressed in terms of inten-
sity or abundance. Data collected by this method can be
integrated with historical phenology data sets, enabling the
development of databases for spatial and temporal assessment
of changes in status and trends of disparate organisms. To
build a common, spatially, and temporally extensive multi-
taxa phenological data set available for a variety of research
and science applications, we encourage scientists, resources
managers, and others conducting ecological monitoring or
research to consider utilization of these standardized protocols
for tracking the seasonal activity of plants and animals.
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Introduction

Phenology is the study of the seasonally recurrent activity of
plants and animals, such as the timing of plant flowering or
bird migration, and is central to understanding ecological
interactions in the natural and modified systems upon which
human society depends. Contemporary climate change has
resulted in widespread and ongoing shifts in phenology across
many taxa and within varied geographic regions (Parmesan
2006; Cleland et al. 2007; Thackeray et al. 2010). Such shifts
in species’ phenologies can affect ecosystem processes and
functioning. For instance, changes in plant and animal phe-
nology have been linked to shifts in timing of wildfires
(Westerling et al. 2006), disease (Grulke 2011), carbon cy-
cling (Keeling et al. 1996; Richardson et al. 2009; Hufkens
et al. 2012), species interactions (van Asch and Visser 2007;
Burkle et al. 2013), and the distribution and abundance of
species (Both et al. 2006; Willis et al. 2008; Chuine 2010). In
addition, changes in phenology can result in alterations to
agricultural practices (Hu et al. 2005; Wolfe et al. 2005;
Schwartz et al. 2006), allergy seasons (Van Vliet et al. 2002;
Ziska et al. 2011), and the timing of cultural activities, such as
blossom festivals (Aono and Kazui 2008; Chung et al. 2011)
and public visitation to national parks (Buckley and Foushee
2012).

Numerous studies examining long-term phenological re-
cords from the past 50 to 100 years have demonstrated clear
changes in the timing of phenological events in taxa including
birds, plants, butterflies, and mammals (Inouye et al. 2000;
Pefiuelas et al. 2002; Gordo and Sanz 2009; Thackeray et al.
2010; Bartomeus et al. 2011; Ovaskainen et al. 2013). These
studies have primarily documented advances in spring plant
and animal activity, though changes in summer and autumn
events have also been documented (Vitasse et al. 2009; Ibanez
et al. 2010; Crimmins et al. 2011; Fridley 2012). Together,
these analyses underscore the value of phenology data as an
indicator of plant, animal, and ecosystem response to climate
change (IPCC 2007).

The majority of studies documenting phenological change
have been geographically and taxonomically limited. Further,
prior studies have used a wide range of methods, including a
variety of categories and definitions for various phenological
stages, different criteria for determining the presence of such
stages, different sampling methods and frequencies, and dif-
ferent units of observation (e.g., plots, individual plants or
animals, etc.), making comparative analyses across studies
and species challenging (Root et al. 2003; Parmesan 2007;
Thackeray et al. 2010; Tooke and Battey 2010; Menzel et al.
2011; Cook et al. 2012; Diez et al. 2012; Wolkovich et al.
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2012). A geographically extensive set of observations, col-
lected using standardized protocols on a regular interval,
would offer a much stronger data resource for documenting
species’ responses to changing climate conditions.

The community of scientists, resource managers, and edu-
cators engaged in the USA National Phenology Network
(USA-NPN), which was established in 2007, recognized an
opportunity for better coordination in phenology data collec-
tion (Schwartz et al. 2012b). To this end, members of this
group developed a standardized and conceptually integrated
method for observing phenology of both plants and animals
that can be implemented across polar, temperate, tropical, and
water-limited ecosystems. As outlined below, this method
includes several elements to enhance the detection and de-
scription of phenological responses beyond what is possible
with some other methods commonly used in temperate re-
gions in the past. By encouraging those initiating new obser-
vation efforts to follow these protocols—and existing obser-
vation efforts to develop crosswalks or adopt aspects of the
protocols where appropriate—we hope to build a large, spa-
tially and temporally extensive, freely available, phenological
data set based on a common sampling method.

Here, we present the general monitoring approach and
specific phenophases developed by scientists working as part
of the USA-NPN. These protocols are designed for in situ
observations of plant and animal phenology across terrestrial,
freshwater, and marine ecological systems. We define the term
phenophase as an observable stage or phase in the annual life
cycle of a plant or animal that can be characterized by a start
and an end point. Phenophases typically have a duration of a
few days or weeks. Examples of phenophases include the
period over which newly emerging leaves are visible or the
period during which frogs are calling.

Attributes and advantages of monitoring methods

These standardized protocols are designed to quantify the
onset, duration, and intensity of phenological stages of plants
and animals to understand how life cycles track environmental
variation. The protocols can be tailored to any sampling
density or frequency depending on available resources and
the science or management question under investigation, and
enable integrated monitoring of both plants and animals to
address questions related to both populations and communi-
ties. The phenophase categories associated with particular life
forms and functional types are summarized in Tables 1, 2, 3, 4,
and corresponding phenophase definitions are outlined in
detail in Online Resource 1. The monitoring method is char-
acterized by several elements that allow for enhanced detec-
tion and description of phenological responses through time
including (1) repeated assessment of phenophase “status” to
provide explicit information on presence as well as absence of
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Table 2 Summary of USA-NPN phenophases for insects

Phenophase title Mayfly Dragonfly/damselfly Grasshopper Stonefly Tiger beetle Butterfly Moth Bee
Active adults X X X X X X X X
Adults feeding X X X

Flower visitation X X
Migrating adults X X

Mating X X X X X X X X
Egg laying X

Active subadults X

Active caterpillars X X
Caterpillars in tent X
Caterpillars feeding X X

Dead caterpillars X X

Active nymphs X

Nymphs feeding X

Dead nymphs X

Dead adults X X X X X X X X
Individuals at a feeding station X X
Individuals at a light X X
Individuals in a net X X X X X X X

Column headings represent insect guilds, and row headings are phenophases to be observed. An “X” indicates this phenophase should be observed for
species in that guild. Note that phenophases for advanced insect observers are not included here, and protocols have yet to be developed for several
important insect taxa. For phenophase definitions and more detailed information about the USA-NPN protocols, see Online Resource 1

a phenophase, (2) intensity or abundance of phenophases, (3)
independent tracking of different and potentially overlapping
phenophases, and (4) monitoring of multiple individuals with-
in a population.

The first key element that defines the monitoring method is
the periodic assessment of the “status” of the phenophase for
an organism, rather than simply recording the date of an
“event” (Fig. 1). Historically, many individuals and phenolog-
ical monitoring programs have recorded the timing of pheno-
logical events—that is, precisely defined points in the annual
life cycles of plants or animals (e.g., Sparks and Carey 1995;
Bradley et al. 1999; Fitter and Fitter 2002; Miller-Rushing and
Primack 2008). Examples of phenological events include first
leaf and first flower of plant individuals or species, or first
arrival and first departure of migratory animal species. Event
data have been instrumental in documenting changes in spring
leaf and flower onset in many studies, as well as changes in
migration timing and species interactions (e.g., Bradley et al.
1999; Inouye 2008; McKinney et al. 2012). Data collected via
a status monitoring approach can offer even more information
and further insight into species’ phenology than can be
gleaned from event monitoring. For instance, event-based
monitoring generally misses repeat events (e.g., a second flush
of leaves after a killing frost or a second round of flowering
within a season (Crimmins et al. 2013), Fig. 1b). As such,
event-based monitoring is impractical in tropical or

@ Springer

subtropical systems where the beginning (or end) of a season
or a phenophase is often difficult to define. For this reason,
monitoring methods in tropical regions have long employed
continuous assessment of phenophases (Morellato et al.
2010). Moreover, event-based monitoring (e.g., first frog call
of the season or first hummingbird at a feeder) does not
necessarily reflect the population-level behaviors of interest
to resource managers (Miller-Rushing et al. 2008a, b).
Instead of recording the date of phenological events direct-
ly, status monitoring involves evaluating phenophase stafus
(e.g., the presence or absence of leaves, flowers, or fruits for
plants, and mating, feeding, or movement for animals) during
a series of repeated observations over the course of a season
(e.g., Frankie et al. 1974; Inouye and McGuire 1991; Borchert
1994; Sparks et al. 2005; Morellato et al. 2010; Crimmins
et al. 2011) (Fig. 1). Observations are expressed as the ques-
tion, “Do you see [phenophase]?” to which the observer
answers “yes”, “no”, or “uncertain” for the presence of each
phenophase (Fig. 2). Depending on frequency of observation,
this approach provides explicit information on presence, ab-
sence, and duration of phenophases, as well as any within-
season gaps in the presence of a phenophase resulting from
periodic or repeated activity (e.g., flushes of leaves or flowers,
or pulses of migratory animals) (Fig. 1b). This approach also
enables conceptual and actual integration of the observation of
sessile (e.g., plants) and mobile (e.g., birds) organisms at the
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Table 3 Summary of USA-NPN phenophases for fish, amphibians, and reptiles

Phenophase title Fish (saltwater) Fish Fish

(anadromous)

Eel Salamander Toad/frog Alligator Turtle Lizard/snake

(freshwater)

Individuals on land

Adults on land

Individuals in water

Adults in water

Adults in freshwater

Adults in saltwater

Feeding

Adults feeding

Adults migrating upstream
Adults migrating downstream
Juveniles in saltwater
Juveniles moving upstream
Vocalizing

Adults vocalizing

Mating

Nesting

Fresh eggs

Young individuals

Dead individuals

Dead adults

Dead or dying adults X
X
X

X
X
X

Individuals on a hook

Individuals in a net

X
X
X

X
X
X

Column headings represent animal guilds, and row headings are phenophases to be observed. An “X” indicates this phenophase should be observed for
species in that guild. Note that phenophases for advanced animal observers are not included here. For phenophase definitions and more detailed

information about the USA-NPN protocols, see Online Resource 1

same location, making it possible, for example, to explicitly
record whether pollinators are present while flowers are open
or whether leaves are present at the time caterpillars hatch. In
sum, this integrated multi-taxa approach creates an integrated
framework for tracking phenology of both plants and animals
at the level of either populations or communities.

Phenophase status monitoring also allows determination of
phenological event dates from the resulting data, depending on
the application or information needs of the user. For example,
the date of the first report of presence after a report of absence
for open flowers can be interpreted to reflect the event date of
“first flower”, though the user can define custom criteria for
defining events. Alternatively, event-based data can be
mapped onto status-based data; for example, historical
event-based observations of lilacs were integrated into the
status-based database of the USA-NPN, extending the spatial
and temporal range of the USA-NPN database (Schwartz et al.
2012a).

In situations where observations are impossible to make
everyday (e.g., remote locations), status-based monitoring
provides a mechanism to quantify the uncertainty in the event

date by capturing the frequency of observation (e.g., the
number of days that passed between the last report of absence
and the first report of presence). Status monitoring enables
observers to record data each time they make an observation
(i.e., “yes,” “no,” or “uncertain’), which can be more active
and engaging than event-based monitoring. Finally, with sta-
tus monitoring, even a single observation of phenophase
presence or absence is potentially useful as it can be combined
with observations of other observers.

A second element that characterizes the monitoring method
is the inclusion of intensity or abundance measures associated
with the presence of a particular phenophase (Figs. | and 2). In
addition to documenting the presence or absence of a
phenophase, observers also may record the intensity or abun-
dance of each phenophase (e.g., number of flowers present,
percentage of flowers open, number of robins feeding, etc.).
For example, rather than simply collecting data on the pres-
ence of open flowers on a given plant, these protocols allow an
observer to also document the total number of flowers and the
proportion of flowers that are open on a given day. These data
could be used to identify periods of low flower abundance that

@ Springer
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Table 4 Summary of USA-NPN phenophases for birds and mammals

Phenophase title Bird Shorebird ~ Hummingbird  Songbird Mammal Pinniped  Squirrel/chipmunk  Deer/sheep
(general) (general)

Active individuals X X X X X X X

Individuals on land X

Individuals in water X

Feeding X X X X X X X X

Fruit/seed consumption X X X

Insect consumption X X X

Flower visitation X X

Nut gathering X X

Calls or song X X X X

Singing males X X

Males vocalizing X

Male combat X X

Mating X X X X X X X

Nest building X X X

Young individuals X X X X

Summer coat X

Winter coat X

Dead individuals X X X X X X X X

Individuals at a feeding station X X X

Column headings represent animal guilds, and row headings are phenophases to be observed. An “X” indicates this phenophase should be observed for
species in that guild. Note that phenophases for advanced animal observers are not included here. For phenophase definitions and more detailed

information about the USA-NPN protocols, see Online Resource 1
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Fig. 1 Visual comparison of data collected by monitoring phenological
events, phenophase status, and phenophase status plus intensity. Event
monitoring captures onset of a given phenophase, whereas status moni-
toring captures onset and duration. Status monitoring with intensity (or
abundance) captures onset, duration, and magnitude of a phenophase.
Examples are derived from 2012 data submitted in Natures Notebook for
(a) sugar maple (Acer saccharum) leafing for one individual plant in
Maine, and (b) forsythia flowering (Forsythia sp.) for one individual plant
in Massachusetts. Each point represents one observation; black points
indicate presence of the phenophase while white points indicate absence.
(a) illustrates the date on which the first leaf appears (event), the period
during which leaves are present (status), and the period and rate at which
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(b) Open flowers
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the canopy fills from 0 to 100 % capacity and then, empties back to 0 with
leaf fall (status+intensity, circles and solid line) using estimates of canopy
fullness. Also illustrated is the period and rate at which the canopy fills
and empties of autumn colored leaves (status+intensity, triangles and
dashed line). (b) illustrates the date on which the first open flower appears
(event), the periods during which open flowers are present on the plant
(status), and an estimate of the number of open flowers on the plant over
the periods in which they are present (status+intensity). In both examples,
the event point is calculated as the first date of the year where the
phenophase was reported as present. Note that in (b) there are two distinct
periods of flowering, the second of which would not have been captured
using event monitoring alone
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Fig. 2 An illustration of how an observer would make and record
repeated observations for a single individual plant (in this case a black
oak tree, Quercus velutina) over a period of time. Circles around the “y’s”
(yes) and “n’s” (no) indicate the presence or absence of the phenophases
(far left column) on the tree for each date. When a phenophase is present,
an estimate of intensity is included (see Online Resource 1 for intensity

may be important for plant reproduction, for pollinators, or for
other flower-dependent species (Miller-Rushing and Inouye
2009; Aldridge et al. 2011). For animal species, recording
abundance facilitates detection of important population trends,
such as declines or increases within and across years, and the
timing of pulses of migration or breeding that might be par-
ticularly important for resource managers. Coupled with
phenophase status monitoring, these intensity and abundance
measures allow researchers to better characterize and model
phenological patterns in time and space using metrics such as
duration, magnitude, mean and skew (e.g., Thomson 1980).
They also facilitate assessments of potential interactions
among species (Durant et al. 2005; Miller-Rushing et al.
2010).

The third feature that characterizes the monitoring method
is the independent tracking of unique phenophases on an
individual plant or animal species regardless of whether or

measures). In this example, the phenological event of “first leaf” (Meier
2001) would have occurred between May 1st and May 11th, the dates of
the last reported “no” and the first reported “yes” for the “Leaves”
phenophase. Although there are approximately 10 days between each
observation in this example, more frequent observation will be desired in
many cases

not the phenophases are occurring at the same time. For
example, an observer documenting the phenology of a decid-
uous tree would evaluate several leaf phenophases indepen-
dently of each other during each observation, including the
presence and percentage of any leaves (green or colored) and
the presence and percentage specifically of colored (non-
green) leaves. Thus, an observer may document the presence
ofboth green and colored leaves on one visit, and the presence
of colored leaves and absence of green leaves on a subsequent
visit (Fig. 1a). This feature allows for greater flexibility in
understanding the complex relationships between climate,
environmental cues, and phenology as evaluation of separate
phenophase responses permits researchers to tease apart inter-
actions among these variables. For instance, researchers can
now evaluate the effect of drought on leaf color change and
leaf drop independently. Likewise, a researcher can tease apart
the effects of temperature on flower production and the

@ Springer
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opening of flowers. This creates a richer, more complex data
set than other methods that might be designed to determine the
single dominant phenophase or phenological condition of an
individual organism at a given point in time (e.g., Richardson
et al. 2000).

A final defining feature of the monitoring method is that the
phenology of individual plants is tracked independently, and
multiple individuals of the same species can be observed at the
same location. This allows researchers to quantify phenolog-
ical variation within a population as well as across species and
geographic regions. A key gap in our understanding of how
species will respond to climate change is predicting the extent
to which organisms will be able to keep pace with their
changing environment (Gienapp et al. 2008; Hoffmann and
Sgro 2011). Characterizing the range of inter- and intra-
specific phenological responses to temporal and spatial varia-
tion in climate will allow for better understanding of species
capacity to respond to shifting abiotic conditions and im-
proved attribution of observed phenological shifts to evolu-
tionary processes vs. adaptive plastic responses. In particular,
these data can be used to complement and inform genetic
studies and common garden experiments that aim to elucidate
mechanisms of adaptation to a changing climate (e.g., Franks
et al. 2007).

Development and implementation of monitoring methods

The standardized protocols presented herein were developed
with an input from a large and diverse community of re-
searchers and resource managers with expertise in phenology,
ecology, or climate change science, and/or practical experi-
ence in the collection and analysis of human-observed field
data of select taxonomic groups. Usability feedback from
educators and volunteer observers informed subsequent revi-
sions to the protocols. See www.usanpn.org/plant-animal-
credits for a list of all contributors to the protocol
development. Objectives used to guide the development of
the monitoring approach and phenophase definitions include
applicability across a wide range of biomes and species,
usability for observers with varying levels of skill
(professional scientists and resource managers as well as
volunteer observers), and utility for a number of anticipated
scientific end-uses of the resulting data, such as detection of
changes in the start of spring or autumn leaf color, prediction
of allergy seasons, validation of remotely sensed land prod-
ucts, and evaluation and prediction of species range shifts or
mismatches in the phenology of species interactions. In addi-
tion, the protocols were designed to be compatible with other
historical phenology sampling methods, including the
European BBCH scale developed for tracking phenology in
agricultural systems and now used broadly in monitoring
natural systems across Europe (Meier 2001; Koch et al.
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2007), as well as existing volunteer-based phenology moni-
toring programs such as eBird and FrogWatch USA (Schwartz
et al. 2013).

These standardized protocols can be used by any program
monitoring phenology. As a case example, these protocols are
employed in the USA-NPN’s phenology observation pro-
gram, Nature$ Notebook (www.nn.usanpn.org), which
engages both professionals and volunteers in observing and
recording plant and animal activity across the nation
(Schwartz et al. 2012a, b). The resulting data, housed in the
USA-NPN’s National Phenology Database, are freely avail-
able for download, visualization, exploration, and analysis
(http://www.usanpn.org/data) (Rosemartin et al. 2013).
Because data were collected in Natures Notebook during
development of these standardized protocols, documentation
of modifications is provided for data end-users (www.usanpn.
org/results/nndocumentation). Several national level
organizations and agencies in the USA are using these
protocols for phenology observation at pilot sites and/or are
in the process of officially adopting them in their standard
operating procedures (Tierney et al. 2013; Haggerty et al.
2013) They are also in use by many regional, state, and local
partner organizations (e.g., cooperative extension programs,
schools, and conservation organizations).

Conclusion

As the field of phenology expands and its importance in
ecology, evolution, and resource management is better de-
fined, the need for high quality standardized observation
methods is becoming increasingly clear. The standardized
protocols described here provide an approach to enhance
detection and description of phenological responses and facil-
itate greater integration of phenological data collection efforts
across the globe. Researchers are using the data generated
from these protocols to address a number of science questions
on regional to continental scales (Schwartz et al. 2012b;
Euskirchen et al. 2013; Jeong et al. 2013; Liang and
Schwartz 2013). Integrated with other types of data relevant
to plant and animal phenology (e.g., climate data, satellite and
ground-based remote sensing products, physiological and de-
mographic measurements, data on human behaviors, and
health issues), data generated with these protocols will expand
our ability to carry out collaborative and comparative studies,
provide new insights into the causes and consequences of
changes in phenology on a broad range of spatial and temporal
scales, and significantly advance our understanding of eco-
system functioning and the impacts of climate change. In sum,
we encourage those working within and across the fields of
ecology, animal behavior, resource management, ecosystem
science, and climatology to incorporate phenological
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monitoring into long-term studies using these status-based
phenology protocols.
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