USA NPN National Phenology Network

Taking the Pulse of Our Planet

You are here

Phenology Bibliography

Export 209 results:
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
P
Hopp, R. J, B. O Blair, and R. P Hickin. Plant Phenology In Eastern And Central North America: Ii. Phenological Observations On Lilac 'red Rothomagensis'. In Vermont Agricultural Experiment Station Bulletin. Vol. 678. Vermont Agricultural Experiment Station Bulletin. Burlington: University of Vermont, 1973.
Struck, M. Pollination Ecology In The Arid Winter Rainfall Region Of Southern Africa: A Case Study. Mitteilungen Aus Dem Institut Für Allgemeine Botanik Hamburg 24. Mitteilungen Aus Dem Institut Für Allgemeine Botanik Hamburg (1992): 61-90.
Jeong, Su-Jong, David Medvigy, Elena Shevliakova, and Sergey Malyshev. Predicting Changes In Temperate Forest Budburst Using Continental-Scale Observations And Models. Geophysical Research Letters no. 40. Geophysical Research Letters (2013): 1-6. doi:10.1029/2012Gl054431.
Zhu, Likai, Jijun Meng, Feng Li, and Nanshan You. Predicting The Patterns Of Change In Spring Onset And False Springs In China During The Twenty-First Century. International Journal Of Biometeorology. International Journal Of Biometeorology (2017): 1-16. doi:10.1007/s00484-017-1456-4.
Harrer, Laurie EF, and Taal Levi. The Primacy Of Bears As Seed Dispersers In Salmon-Bearing Ecosystems. Ecosphere no. 9(1). Ecosphere (2018). doi:e02076.10.1002/ecs2.2076.
Yue, X., N. Unger, T. F Keenan, Xiaoyang Zhang, and C. S Vogel. Probing The Past 30 Year Phenology Trend Of Us Deciduous Forests. Biogeosciences no. 12. Biogeosciences (2015): 4693–4709. doi:10.5194/bg-12-4693-2015.
Taylor, S.D. Pyphenology: A Python Framework For Plant Phenology Modelling. The Journal Of Open Source Software no. 3(28). The Journal Of Open Source Software (2019). doi:10.21105/joss.00827.
S
Peng, Dailiang, Chaoyang Wu, Xiaoyang Zhang, Le Yu, Alfredo R Huete, Fumin Wang, Shezhou Luo, Xinjie Liu, and Helin Zhang. Scaling Up Spring Phenology Derived From Remote Sensing Images. Agricultural And Forest Meteorology no. 256-257. Agricultural And Forest Meteorology (2018). doi:10.1016/j.agrformet.2018.03.010.

Pages